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Ideally Conducting Phases in Quasi Two-Dimensional Conductors
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The possibility of the existence of ideal conductivity at finite temperatures in &l&+&

quasi togo-dimensi0~«conductors under conditions similar to the quantized Hall effect
is discussed. It is found that for metallic electron densities and realistic values of the
magnetic field the electronic system should break into two coexisting diamagnetic phases,
for which the chemical potential is pinned in the middle of a magnetic energy gap, and the
system is nondissiPative. The experimental feasibility of the proposed mechanism is
briefly discussed.

PACS numbers: 72.15.Gd, 72.60.+g, 75.20.

Recently Azbel' discussed the possibility of the
existence of ideal conductivity at relatively high
temperatures in bulk anisotropic materials under
conditions similar to the quantized Hall effect"
(@HE). In order to achieve such an ideal con-
ductivity three conditions should be met: (1) The
material under consideration should have a high-
ly two-dimensional (2D) electronic band structure.
(2) A magnetic field applied along the hard axis
of the sample should be strong enough to yield a
cyclotron frequency ~. significantly larger than
kBT/8 (kB is the Boltzmann constant and T is the
temperature). (3) The chemical potential p.

should be located sufficiently far (on the scale of
k BT) from any Landau level to assure that the
level just below p. is completely filled while that
above tj. is completely empty. Under these cir-
cumstances dissipation is extremely small (i.e. ,
the relaxation time is extremely long' ); both
longitudinal resistivity and conductivity vanish
while the Hall conductivity is finite.

In a clean highly 2D conductor, however, the
chemical potential is known to be pinned to the
highest occupied Landau level at almost all values
of the magnetic induction B, except for certain
discrete values of B, around which the chemical
potential varies rapidly between adjacent Landau
levels. This makes the validity of the above idea
crucially dependent on the existence of an e«»&-
sic mechanism for the pinning of the chemical po-
tential within a magnetic energy gap, such as,
for example, pinning to localized impurity states,
which may be present within the magnetic gaps. '

Gur aim in this note is to show that, under cer-
tain reasonable conditions, it is not necessary to
invoke such an extrinsic mechanism, since there
is an intrinsic mechanism for the pinning of the
chemical potential in the middle of a. magnetic

gap. We find that, for metallic electron densities
and realistic values of the magnetic field, the
pinning of the chemical potential to a Landau level
corresponds to a thermodynamically unstable
situation, so that thermodynamic stability im-
poses creation of coexisting diamagnetic phases,
for which the chemical potential is located in the
middle of a magnetic gap. Creation of magnetic
domains in SD metals under conditions of the de
HRas-van Alphen effect have been previously dis-
cussed by a number of authors. ' ' This effect
should be much more important, however, in
quasi 2D conductors since in these systems the
energy bands are separated by large magnetic
gaps. ' As we shall show below, this should lead
to the establishment of an ideal conductivity in
the interior of each diamagnetic phase.

To show this we consider a simple model for a
quasi 2D conductor"; the model consists of an
anisotropic electron gas having two equivalent
easy axes (x and y) and a, perpendicular hard
axis (z). A static magnetic field H is applied
along the z axis so that the single-electron ener-
gies are given by

e(n, k, ) = (n+-,')h(u, + b.,[1-cos(k, d)],

where ~, is the cyclotron frequency, d is the
lattice constant in the z direction, and n = 0, 1, 2,

For highly 2D cyclotron orbits the max-
imum value of the longitudinal kinetic energy 6,
is much smaller than h~, . Note that the electron
spin is ignored in Eq. (1). The inclusion of spin
would introduce some difficulties into our analy-
sis." A preliminary study of this problem indi-
cates, however, that the inclusion of spin would
not alter our results in any essential way.

We thus proceed by considering the thermody-
namic potential

& = -k &T P P P In(1+exp([ p - c(n, k, ) J /k s T) ) .
ky n=0

(2)
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As we have already mentioned the condition 6,
«5&, guara. ntees the two dimensionality of the
cyclotron orbits. Under these circumstances we
may neglect the longitudinal kinetic energy term
in the single-electron energy [Eq. (1)] so that
the summands in Eq. (2) are independent of both

k, and k, . The double sum over k, and k, thus
yields a degeneracy factor g= VB/q, d, where V

is the volume of the sample and y, =2zhc/e is
the magnetic flux quantum. A closed analytical
expression for 0 can thus be obtained once the
chemical potential p. is known. The chemical
potential is determined by the equation

g g (I+exp[x(n) —u] j '=N, (3)
n=r

where x(n) = (nb~, —p)/k BT, u = Fi&u-, /2k, T. Note
that the only effect of the interplane coupling in

this approximation is to introduce a. cutoff (k,
= v/d) along the z axis in phase space. Let us de-
note by n F the value of n in Eq. (3) corresponding
to the highest occupied level, R~, (n F ——,'). Now

(nF + ,')R-e, ) p. and (n F - —,')S&u, ( p and since Rru,
»k zT (i.e., u»1) we may replace the value of
each term in Eq. (3) up to n =n F

—1 by unity. To
take into account correctly, however, the depin-
ning of the chemical potential from the level (n,
+ —,')S&u, and the pinning to the level (n F

——,')A~, we
should retain the exact expression for both the
n Fth and the (n F + I)th terms.

Using this approximation in Eq. (3) we obtain
the equation

sinh(x F)/[cosh(x F) + coshu] =A(B),

where x F =—x(n F) and A =-n„N/g-. Solving Eq. (4)
we obtain

P = &~,n F
—k B Tin([A coshu+(1+A'sinh'u)' ']/(1-A)) .

The corresponding result for the magnetization is given by

M(B) =-V '(&n/BB) ~ „„=(y,d) '(nF p(B) +R~,A[n F+sinhu/2sinh(x~)]

-R(u, (n F'+1) +k Br In[2 cosh(x, ) + 2 coshuJ] .

(5)

As can be readily seen from Eq. (5), around the
value B*=(N/V) g, /nF —of the magnetic induction
B, where A =0, the chemical potential moves
rapidly from the close vicinity of the upper Lan-
dau level h&u, (n F + —,'), to the close vicinity of the
lower level h&u, (n, ——,'), a.s B moves from slight-
ly below B*to slightly above B* [see Fig. 2(a)].
For values of B sufficiently far from B*the mag-
netization M(B) exhibits essentially a, linear de-
pendence on B [see Figs. 1(b) and 2(b)] with a
slope

y = hen F'/m, clod =n, 'e'/2vdm, c',
which is identical to the value of the de Haas-van
Alphen susceptibility obtained by Azbel' (see also
Peierls' and Halperin. ")

The corresponding H vs B diagram is shown in
Fig. 1(c). In the high-field portion of the diagram,
where the slope y, (n, ) of the M(B) curve is small-
er than 1/4w, the slope of the H(B) curve is posi-
tive and for each value of the external field H in
this region there is only one value of B on the
H(B) curve. Since the chemical potentia. l is al-
most everywhere pinned to a Landau level, ideal
conductivity is practically impossible in this
region. If the field H is sufficiently low, how-
ever, such that X,(u„) ) I/4v the slopes of the
linear portions of the H(B) curve are always nega-
tive and for each value of H there are at least

! three different values of B on the H(B) curve.
The value of B*(n„)for which this phenomenon
starts to occur is given by

B, ' = [ 4m(N/ V) he/m, c ]n F .
It can be readily shown that for all values of B*

between B, and B, '=B, '/4 2 there are no more
than three va.lues of B (B„B„a.nd B, in Fig. 1)
on the H(B) curve for each value of H. Let us
for the sake of simplicity assume that this is our
case. The slope of the H(B) curve near B, a,nd

J3, is positive so that they correspond to thermo-
dynamically stable situations. B„however, is
located in the linear portion of the H(B) curve
and since the slope (&H/sB) there is negative it
corresponds to an unstable situation. Thus ther-
modynamic stability imposes the breaking of the
originally homogeneous system into two diamag-
netic phases, one having magnetic induction B
= B, and the other B= 8,. Thus the cyclotron fre-
quency for an electron in the first phase is ~, '
=eB'/m, c while that for an electron in the sec-
ond phase is ~, '=eB'/m, c.

Applying the Maxwell construction' to deter-
mine the equilibrium condition for coexistence
between the two phases, one finds that the chem-
ical potential for the entire system is located
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PIG. 1. Schematic illustrations of (a) the chemical
potential p, (b) the magnetization Af, and (c) the mag-
netic field B as functions of the magnetic induction B
at zero temperature. B&, B&, and Bo are defined in
the text and &F is the value of the chemical potential
at zero magnetic field.

exactly at

p, = h(u, 'n
F

= h(u, '(n
p + 1) = (N/V) 2~8'd/m, .

In other words, for each phase the chemical po-
tential is located exactly in the middle of the gap
separating the highest occupied level from the
level just above it. Thus in both phases the high-
est occupied level is completely filled so that
ideal conductivity is expected to occur in the
interior of each phase. Significant deviations
from ideal conductivity may occur in the transi-
tion zones separating different phases but the
overall effect on the conductivity of the whole
sample should be small because of the small size
of the transition zones. "

As we have already mentioned, several condi-
tions should be met in order that the proposed
mechanism for ideal conductivity would be opera-
tive: (1) The cyclotron frequency &u, should be
much larger than both 6, /E' and k, T/h. This im-
plies that one should look for a material with a
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FIG. 2. The variation of (a) the chemical potential
p and (b) the magnetization M as functions of g(B)
= n& —%pod/UB around A(B) =0 (i.e. , B =B*) for
various values of the parameter o. = k~, */2k s T,
—= eB*/m ~C.

small in-plane cyclotron mass m, such as, for
example, the linear-chain mercury compound
Hg3 „AsF„which exhibits a numbe r of large
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cyclotron frequencies in de Haas -van Alphen ex-
periments" (the largest cu, observed corresponds
to m, —m, /50, where m, is the free electron
mass). (2) The de Haas-van Alphen susceptibility
y, (nF) iEq, (7)] should be larger than 1/4& for the
diamagnetic instability to appear. The meaning
of this condition is that the applied magnetic field
B should be smaller than (2m, /d) ' 'E F/A, where
EF is the chemical potential at zero magnetic
field. Taking for E F a typical value of I eV and
assuming m, =0.1m, (see later) we obtain for a
typical value of the interplane distance d (e.g. , d
&10 A) that H &3 T. A single bistable situation
can thus be obtained for magnetic fields satisfy-
ing B, '/&2&B&B, '. This is a sufficiently large
range for B, ' of the order to several tesla.

Note that since condition (1) requires a large
magnetic field while condition (2) retluires a suf-
ficiently small one it might be difficult to satisfy
them simultaneously. To check how restrictive
these conditions really are we assume that II
satisfies condition (2) a,nd then determine the
values of EF, m„d, ~„and T for which con-
dition (1) can be satisfied. The result is &„4BT
&[(2e'/m, C')/d]' 'EF. Thus for our typical val-
ues (i.e., EF =1 eV, d=10 A, m, =O. lm, ) we find
that (6,/kg), T &30 K,

Our conclusion is therefore that the effect may
be observed experimentally under realistic mag-
netic fields and at reasonably low temperatures
in the family of the intercalated graphite com-
pounds since in this family the in-plane effective
mass is small (for clean graphite the in-plane
effective mass is about O. lm, '~) and the inter-
plane distance may be controlled experimentally.
The effect may also appear in the linear-chain
mercury compound Hg~„AsF„since it exhibits

a highly two-dimensional dynamics of the conduc-
tion electrons in de Haas-van Al.phen experi-
ments" and large in-plane cyclotron frequencies.

The authors are indebted to M. Azbel, D. Berg-
mann, Y. Imry, P, Pincus, and D. Sepunaru for
useful discussions on the subject.
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