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Supersymmetric Black Holes in N=2 Supergravity Theory

P. C. Aichel. burg
Tnstitut fur Theoretische I'hysR, Un& ersitat lA'en, A-1090 8'ien, Austria

R. Guven
Tubitak Research Institute for Basic Sciences, Gebze, Kocaeli, Turkey

(Received 4 May 1983)

An exact, asymptotically flat, stationary solution of the field equations of O(2) extended
supergravity theory is presented. This solution has a mass, central electric charge as
well as a supercharge, and constitutes the first exact, supersymmetric generalization
of the black-hole geometries. The solution generalizes the extreme Reissner-Nordstrom
black holes.
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A remarkable property of the extreme Reissner-
Nordstrom black holes is their quantum-mechani-
cal stability. These black holes have zero Hawk-
ing temperature, saturate the Bogomolny bound
for general relativity, and play the role of the
gravitational solitons. "When one searches for
possible generalizations of black holes in the
framework of O(2) extended supergravity theory,
one finds that it is precisely these stable black
holes which are distinguished by the local super-
symmetry, This can be seen by linearizing the
equations of O(2) supergravity with respect to the
spin-~ fields and employing the resulting scheme
to examine the spin-~ perturbations of the Kerr-
Newman black holes. In this approximation the
supersymmetry invariance manifests itself as a
gauge freedom associated with the perturbations
and dictates that Kerr-Newman black holes can-
not support regular, stationary, nongauge spin-

~ fields unless the Bogomolny bound is saturat-
ed. ' Moreover, when the Bogomolny bound is
attained, supersymmetry allows only a particu-
lar multipole of the spin-~ fields to possess
these three qualities simultaneously. Among the
static, nongauge spin-~ perturbations of the ex-
treme Reissner-Nordstrom black holes there is
a unique mode which is regular on and outside the
future horizon and which dies off at spatial infini-
ty. This mode is the 1 =~ multipole of the spin--',
fields and carries the conserved supercharge as
a linearized superhair" for the black holes. '

It is known that in classical relativity a spin-s,
zero-rest-mass field can lead to new black-hole
parameters only through its l& s multipoles. '
The above results are in complete agreement
with this observation and indicate that the super-
symmetry can extend the notion of a black hole
in a well-defined manner to the quantum domain.
This expectation. is based on the fact that, at the

linearized level, the supersymmetry singles out
not only the expected multipole of the spin-~
fields but also the quantum-mechanically stable
backgrounds. Therefore, it is of considerable in-
terest to examine how the linearized results are
generalized at the level of the exact solutions of
the O(2) supergravity theory. The number of
relevant exact solutions is clearly very limited.
If these solutions can be found, they will consti-
tute the only exact, fully supersymmetric gener-
alizations of the black-hole geometries and may
offer new insights into the nonperturbative struc-
ture of the O(2) supergravity theory.

In this Letter we shall present such an exact
solution. This is an asymptotically flat, station-
ary solution of the field equations of O(2) super-
gravity which generalizes the extreme Reissner-
Nordstrom black holes. The solution has a mass,
and central electric charge as well as a super-
charge. When one sets the supercharge parame-
ter to zero in the solution, one switches off the
spin-~ fields and the extreme Reissner-Nord-
strom geometry results. On the other hand, when
one retains the linear terms in the supercharge,
one obtains the l =~ multipole of the spin-~
fields on the extreme Reissner-Nordstrom back-
ground.

Consider the O(2) extended supergravity theory
in the form where the internal O(2) symmetry is
not gauged and where all the auxiliary fields are
set equal to zero. ' Then, in the second-order
formalism, the field variables appearing in the
O(2) supergravity action may be taken to be the
orthonormal tetrad one-forms' V', the gravipho-
ton potential one-form A, and an O(2) doublet of
Majorana spinor-valued one-forms g'. Among
these fields the fermionic variables g' must be
treated as odd elements of a Grassmann algebra'
and because of the supersymmetry invariance
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this implies that the bosonic fields V' and A are
even elements of the same algebra. The fields
V', A, and P' which extremize the O(2) super-
gravity action are obtained in the usual manner
by a variational principle and are governed by a
set of nonlinear field equations. In order to
write down these equations it is convenient to in-
troduce first the two-forms 2K, =&"P '~g" and
2K, = —ie'"P '~ y,P', the supercovariant field
strength F =dA +K„and the supercovariant de-
rivative, '

f)4' =DO' —(i/2)~'"(i'. ~' )y& 0 .
Here D is the covariant derivative,

Dg ' =dg'+zan„cr"& g',
involving the exterior derivative d, the torsion-
free connection one-forms ~,b(V ), and the con-
torsion K,& .

(2)

~„=~„(V')+K„; K„&V'=—g 'Ay, ('. (s)

Defining further the space-time curvature two-
forms ay day +acA +y and denoting the Hodge
dual by an asterisk, the field equations of the
O(2) extended supergravity take the form

T'e„„Q"AV' =2T,.(E) *V'+g ' v y,y, Dy',

d(*J -K,) =o,

ysyn Dg" =0,

(4)

(5)

(6)

where

T,~(F) = E„E~'+«-q, ~E,«E' .

v'a, =v2 ( ),
where the spatial components of ~, are the Pauli
spin matrices and 0, is the two-dimensional iden-
tity matrix. We denote the entries of the Majora-
na fields P' as

(9)

The solution to these field equations that we
wish to report is obtained with the aid of a New-
man=Penrose-Debever"'" formalism which takes
into account the torsion generated by P'. There-
fore, we choose the Weyl representation for the
Dirac matrices and take, instead of the ortho-
normal tetrad fields V', the null-tetrad-basis
one-forms (l, n, m, m) as the gravitational field
variables. These basis one-forms may be re-
lated to V' by

and work in a coordinate chart (u, r, g, C), where
u is the advanced time, & is the usual radial, and
f is the complex stereographic coordinate. In
this coordinate chart we have verified that the
null tetrad

l = [6/2r'+ (SM'/r«)SS] dU d-r,

n =dv,

m = (r/W2P)2& + (2M/r')S du,

the graviphoton potential one-form

A = —(M/r)dv,

(10a)

(10b)

(ioc)

and the spin-~ fields g', whose one-form entries
are

G, ' = (iM/~2 v')~" S"n,

M(r +iM) i9M2
2r' v 2v«

i ~2M
+ 2

&'"S m,y'

(i2a)

(i2b)

cc +cc =Oq cc +cc =O. (14)

By an appeal to the relevant surface integrals"
it can be shown that M is the mass of the solution
and that c' together with c' constitute the entries
of the spinor supercharge. The solution also has
a central electric charge e which satisfies e =M.
IBecause of the invariance of Egs. (4)-(6) under
the duality-chiral transformations, " the inclusion
of a central magnetic charge is straightforward. ]
From Eqs. (10)-(12) it can easily be inferred
that the terms which are nonlinear in c' all die
off very rapidly at spatial infinity and do not con-
tribute to the surface integrals. In particular, at
spatial infinity the total supercharge of the solu-
tion is anchored only by the linearized parts of
the spin-~ fields. Hence a simple way to verify
the nature of the constants is to linearize the so-
lution with respect to the parameters c'. Then
Egs. (10) and (11) reduce to the extreme Reissner-
Nordstrom solution and Eg. (12) reduces to the
~ =~ multipole of the spin--', fields in the super-

constitute an exact solution to Egs. (4)-(6). Here
we are using the abbreviations & =(v -M)', 2P
=1+/), and S =&"S'S", and

2(c~ ig& c g)

is a particular 'combination of the spin-~ spheri-
cal harmonics. ' Moreover, M and c' are the only
free parameters appearing in the solution; M is
a positive real constant and c' are odd elements
of a finite-dimensional Grassmann algebra:
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gauge of Guven. "
Certain obvious properties of the solution ean

be exhibited by noting that any Grassmann-alge-
bra-valued field can be decomposed into a ' body"
which takes values in the field of real or com-
plex numbers and a soul" which is nilpotent. "
Consider for example the space-time metric

corresponding to the solution (10)-(12). This
metric can be written as

g =go -gs p (16)

where the body g& is the usual Reissner-Nord-
strom metric and the soul g~ is

gz = 4 SSdv2+ dv(Sdg +Sdf).
2.lI', 2v 2(Vi

Q=QH+Q. .t, (18)

where Q& is the supercharge evaluated on the
two-sphere located at & =M. Q„, is the super-
charge calculated on a spacelike hypersurface
which starts at the horizon and ends at spatial
infinity. Then one finds that, whereas Q„and
Q, „, may be mixed by an infinitesimal supersym-
metry transformation, the total supercharge Q
is a supergauge-invariant quantity. This proper-

The body g& is, of course, static and spherically
symmetric. The full metric g itself is only sta.-
tionary. This is quite understandable because,
the fermionic fields g' —which cannot be axially
symmetric —generate, in addition to the space-
time torsion, a nonzero twist for the timelike
Killing vector E"=6„".

How can this solution be interpreted as describ-
ing a black hole~ Here one may take the view-
point that the body of a Grassmann-valued field
can always be given an operational interpretation
and use g& to identify the black hole. In-this ap-
proach the horizon of the black hole will be locat-
ed at & =~ which, is a null hypersurface with re-
spect to g&. This horizon is a degenerate hori-
zon and intersects the v =const hypersurfaces on
a two-sphere of surface area 4&M'. On this two-
sphere the soul of the metric vanishes and g'
have purely tangential components (see Fig. 1).
Within this interpretation one may evaluate the
supercharge of the solution with the aid of the
supereovariantly constant spinors' which are ad-
mitted by g~. Using the supercovariantly con-
stant spinors in the manner described by Aichel-
burg and Guven" one obtains that the total super-
charge Q, calculated at spatial infinity, is

FIG. 1, In the solution the intersection of the horizon
with the p=eonst surfaces is a bvo-sphere. On this
two-sphere spin-& fields have purely tangential com-
ponents.

ty follows from the sharp falloff of the fields at
spatial infinity.

Within the above framework one may calculate
the value of the N =2 supergravity action for the
solution by specifying a region between two
Cauchy hypersurfaces of g& which extend from
the internal infinity & to the spatial infinity i'.
(For a discussion of these boundaries, see Haji-
cek".) Before integrating the Lagrangian over
such a region, it is necessary to consider the
surface terms" which must be added to the action
in order to have well-defined variations at the
boundaries. When these are taken into account
one finds that all the surface terms at & vanish
for Egs. (10)-(12) and that the only nonzero con-
tribution of the solution to the action comes from
the surface terms at i:

—pf, (sE-K,) ~ A. , (19)

where '" is the full connection, ~" is the tor-
sion-free flat connection and, following Ref. 18,
the graviphoton gauge is chosen so that A =0 at

Moreover, one finds that Eq. (19) yields for
(10)-(12) precisely the value of the action for the
extreme Reissner-Nordstrom solution. There-
fore, with respect to the above boundaries, the
lowest-order contributions of the two solutions
are the same in the stationary-phase approxima-
tion to the Feynman path integral. It will be inter-
esting to compare the one-loop quantum correc-
tions to these two solutions in the framework of
+ =2 supergravity.
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Let us finally note a more challenging approach
to the solution which is linked to the anticommuta-
tivity of e' and which points towards a quantum
interpretation. A curious consequence of the
anticommutativity of c' is that the norm of the
timelike Killing vector K" for the full metric g
is a purely radial, Grassmann-valued function.
If one could interpret this function in terms of
the expectation values of the quantum operators
in a yet undefined sense and treat the anticom-
muting constants as ordinary numbers after ob-
taining the solution, tIten the full metric g could
be used to describe a black hole. As can easily
be inferred from Etls. (16) and (17), with this as-
sumption the norm of &" would vanish on a nonde-
genexate horizon. This horizon would still have
the topology of a two-sphere (see Fig. 1) but the
theorem, implying that the stationary black holes
must be axially symmetric, "would presumably
be transcended. At the present state of quantum
gravity, a better understanding of this interest-
ing possibility awaits the determination of the
back reaction of the spin-~ fields which are quan-
tized on an extreme Reissner-Nordstrom back-
ground.
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