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Critical Behavior of the Two-Dimensional Sticks System
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Percolation critical exponents are derived, for the first time, for a two-dimensional
system of randomly distributed conducting sticks, which provides a very convenient
model for the study of continuum percolation. In the present computer study it was
found that the corresponding conductivity exponent, t, has the value of 1.24 +0.03 and
that the cluster exponents p, y, and 7 have the values 0.14+0.02, 2.3+0.2, and 2.0+0.1,
respectively. These results, which are in excellent agreement with values derived for
lattices, show that the conductivities of continuum systems and of lattice systems belong
to the same universality class.

PACS numbers: 05.40.+ j, 05.60.+w, 64.60.Fr

In 1974 Pike and Seager' considered the perco-
lation problem of a two-dimensional random-
sticks system using a Monte Carlo computation.
They were able to determine the critical stick
length that will bring about the onset of percola-
tion in a system of a given sticks density. Since
then, significant progress has been made" in
the understanding of percolation in various sys-
tems but no study of the critical behavior of the
sticks system has been reported. In particular
the resistance of such a system, its critical be-
havior, and the critical behavior of the stick clus-
ters have not been determined. In addition to be-
ing an interesting system in its own right with
application for the understanding of resembling
composites, ' the sticks system is a continuum
system particularly well suited for computation-
al studies.

Until recently it was not clear whether the con-
tinuum percolation belongs to the same univer-
sality class as the lattice percolation. ' Recent
comparisons of the cluster-statistics exponents' '
have been used to indicate that continuum per-
colation does belong to the same universality
class as lattice percolation. The universality of
the conductivity, however, does not necessarily

follow the universality of the cluster statistics
because of the introduction of Kirchoff's laws in
the conductivity problem. The conductivity ex-
ponent t has been previously determined for con-
tinuum systems by measurements of physical
systems" or by an early computer study of a
correlated lattice. " The t values derived lead
one to expect a universality for the conductivity
but this conclusion does not seem to be firm.
The reason is that thus far there has been no re-
ported study for which both the cluster exponents
and the conductivity exponent were derived simul-
taneously on a given continuum system, and then
shown to be the same as those of lattices. More-
over, the relatively poor accuracy (compared to
currently available accuracies of computer stud-
ies) of the derived "continuum" t values does not
satisfactorily establish their equality to the re-
cently accepted "lattice" t values. " Following
all of this we have used the sticks system for the
determination of the cluster exponents P, y, and
7, and of the conductivity exponent t. The good
agreement between the values obtained here and
those derived for lattices and other continuum
systems helps in establishing that the conductivi-
ties of the lattice and of the continuum belong to
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the same universality class.
The samples used in the present study were

generated by use of the procedure of Pike and
Seager. ' The computer randomly puts N sticks
of a given length L in a unit square. Throughout
this paper this length is expressed in units of r,
= 1/(~N)"' T.he orientations of the sticks, 8„
are chosen randomly and thus the system is ex-
pected to be isotropic, i.e. , that Pii =+, , Isin0, I

and Pi=+";,Icos&;l are on the average equal.
The direction with respect to which 9; is selected
will be called here the longitudinal direction
while the perpendicular direction will be called
the transverse direction. Even with the large
samples used (N= 1000) we found slight anisotro-
pies, but they were less than 5% (0.95 (P ii/P,( 1.05). The intersection between two sticks was
determined with use of the criterion of Ref. 1.
However, in the present work the clusters formed
by the intersections were registered in the fol-
lowing manner. If two sticks intersect, they are
given the same cluster number. The cluster num-
bers are updated with each check of intersection,
so that two clusters are given the same cluster
number if they have a common stick. When the
search for intersections is completed, one ob-
tains the number of the clusters and the number
of sticks in each of them. For percolation, one
checks the intersection of the sticks with two op-
posite boundaries. If the boundaries belong to
the same cluster, we say that percolation is ob-
tained, and the smallest L which provides perco-
lation is called the critical stick length, L,.

Once the intersections are registered, a unit
resistor is attached to each of them. The sticks
themselves are assumed to be resistanceless,
The sticks and the boundaries are assumed then
to be the junctions or the equipotentials of the
resistor network obtained, while the intersec-
tions are the resistors of the circuit. In Fig. 1

we illustrate the transformation of a conducting-
sticks system into a resistor network. Applying"
the well-known matrix representation for resis-
tor networks' and considering only the percolat-
ing clusters, we obtain the resistance Rii in the
longitudinal direction as well as the resistance
R in the transverse direction. Intuitively one
expects that taking a prefixed L and a variable N
and associating a resistivity to the sticks, rather
than a resistance to the intersection, will yield
the same critical behavior. We have checked
this expectation and found that indeed, within the
"experimental" uncertainty, the values of the ex-
ponents agree with those obtained in the fixed-N,
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variable-L, and intersection-resistance case.
The reason for presenting here the results of the
latter case is that it requires much less computer
storage and time, enabling the consideration of
larger sticks ensembles (N= 1000) and thus nar-
rower error limits in the values derived for the
critical exponents.

In the computations we determine the number
of sticks in each cluster and the resistance of the
sample as a function of L. The present results
were derived by use of four "seeds" (or "start-
ers" ) which, since we use both directions in this
isotropic case, provide eight (essentially inde-
pendent) sets of data. We have used these sets
for the determination of the accuracy of the de-
rived exponents. If we recall that in continuum
percolation problems the continuous variable pa-
rameter is the density of conducting elements, ' '
it is expected that in the present problem this pa-
rameter is N/N, —1, where N, is the critical
sticks concentration in the fixed-L, variable-X
case. For the reason mentioned above, we have
considered the opposite case. This requires,
however, the definition of the continuous variable
in terms of L. Since it was shown' that the onset
of percolation is given by L X, =L, X, we may
conclude that N/N, —1= (L/L, )' —1. This point
will be further justified by excluded-area argu-
ments. "

Following the above considerations, we have
presented all the results as a function of (L/L, )'
—1. Typical results for the resistance of a sam-
ple are shown in Fig. 2. For the eight sets of

FIG. 1. The transformation of a conducting-sticks
system into a resistor network. The sticks are assumed
to be conducting and a resistor is assumed to be as-
sociated with the intersection of two sticks. Note that
the equipotential stick is reduced to a point or a junction
in the resistor network.
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FIG. 2, The longitudinal and transverse resistance
of a two-dimensional system of 1000 sticks as a function
of the stick-length variable parameter (L/L, ) —l.
These results have been found for one of the seeds.
The horizontal "error bars " indicate the regions of
the graph to which the results of three other seed
(samples) are confined.

data we found that L, was within the interval 4.2
+ 0.1 which made us conclude that the results for
(L/L, )' —1~ 0.1 are not to be seriously consid-
ered. In fact the rounding of the data towards
small values of the variable critical parameter
is known to be associated with finite-sample ef-
fects. On the other hand, in percolation problems
one may expect" critical behavior even for the
interval 0.1-1 of the variable critical parameter
and thus the best fit in this region can yield the
correct critical exponent. Indeed, for this re-
-gion we found, using our nonlinear least-squares-
fit procedure, "that 5 = 1.24 for both directions
with one of the seeds. Examining the other three
seeds we found that the data points were within
the "error bars" shown in Fig. 2. Their lea.st-
squares-fit exponents ranged from 1.21 to 1.2'l.
Hence an estimated conductivity critical exponent
of f, = 1.24 + 0.03 seems r eas onable. This t value
is in excellent agreement with the most recent
values (1.28+ 0.03) obtained for two-dimensional
lattices. ""

For the determination of the critical exponent

P we have considered the onset of the longitudinal
percolation in the four seeds. For a large enough
sample one may assume' that the percolation

probability is simply N~/N, where N~ is the num-
ber of sticks which belong to the percolating clus-
ter. Hence we have analyzed the N~/N data, over
the (L/L, )' —1 range used for the resistance anal-
ysis, applying the above nonlinear least-squares
fit." Because of the small values of the lines'
slopes which describe the corresponding depen-
dence, we carried out the fit to the combined data
of all four seeds. We found the best fit to be p
=0.14, and the uncertainty limits" to be 0.02.
For the determination of y we have used the same
procedure as for the resistance except that the
analyzed quantity was Q~N, s' and the range con-
sidered was i(L/L, ,)' —li a 0.1 where L &L,. Here
N, is the number of clusters having s sticks and
the summation is over all nonpercolating clus-
ters. The values for the eight sets of data varied
between 2.1 and 2.5. A least-squares fit of N, vs
s for L ~ L, has yielded the value 7 = 2.0+ 0.1.
Again these results are in excellent agreement
with the. results derived for lattices'" and other
continuum systems. ' Since the cluster statistics
of continuum systems has been presented previ-
ously, ' ' we will report details of our cluster-
statistics results in a forthcoming publication.

In summary, we have shown that the cluster
exponents as well as the conductivity exponent
can be derived conveniently by using a two-di-
mensional system of zero-width sticks. In par-
ticular, it seems that the study of the conductiv-
ity by computer simulation is easier in the sticks
system than in the other commonly studied con-
tinuum systems. We have found that in the sticks
system both the cluster-statistics exponents and
the conductivity exponent are, within presently
available accuracies, the same as those derived
for lattices.

Hence, this system, being a representative of
the continuum percolation problem, indicates
that not only the cluster statistics (as has been
shown by other researchers) but also the con-
ductivity of the continuum percolation belongs to
the same universality class as the lattice perco-
lation.
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