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u-Representability anti Density Functional Theory
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It is shown that if n(g} is the discrete density on a lattice (enclosed in a finite box) as-
sociated with a nondegenerate ground state in an external potential y(y) (i.e. , is "y-rep-
resentable"), then the density g(~) + rMyyg(y), with ng(y) arbitrary (apart from trivial con-
straints) and p small enough, is also associated with a nondegenerate ground state in an
external potential g'(y) near gg (y); i.e., n(x) + pm(y) is also y-representable. Implications
for the Hohenberg-Kohn variational principle and the Kohn-Sham equations are discussed.

PACS numbers: 71.10.+x
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Next consider an infinite, nearly uniform system
with prescribed density'

n(r) =n, + An, (r), . (2)

where & is infinitesimal and n, (r) is an arbitrary,
sufficiently smooth function. Let U, be the poten-
tial associated with n, . To first order in ~ we

I consider a system of Ã nonrelativistic inter-
acting (or noninteracting) electrons in a nonde-
generate ground state associated with a static ex-
ternal potential, v (r). I denote the electron densi-
ty in this state by n(r) and call such a density v-
representable (VR). Clearly, through the Schro-
dinger etluation, v(r) determines n(r). An impor-
tant issue, especially for density functional theo-
ry, ' the so-called U-representability question, is
the following converse question: given some func-
tion n(r), is it v-representable, i.e., can it be
reproduced as the nondegenerate ground-state
density associated with some external potential
v (r)2 This Letter offers a partial, but useful,
answer to this question.

The prior status of this question may be sum-
marized as follows. First of all, it is obvious
that not all functions n(r) are VR. The following
trivial classes are not: n(r) (0 for some r;
n(r) discontinuous; n(r) such that fn(r)dr@ integer.
Recently Levy' and Lieb' have constructed some
nontrivial, smooth density distributions which
are not VH. It has also been clear that the class
of functions n(r) which is VB is not negligible.

"
Thus consider a one-electron system. Given a
sufficiently smooth positive n (r) integrating to
unity, we can construct the ground-state wave
function p(r) =n" '(r) and from it the potential by
the use of the Schrodinger equation,

n, (r) =(2~i) 2/2fexp(iq r)n, (q)dq;

v, (r) =(2&) "'fexp(i q" r)v, (q)dq.
(4)

In terms of the static linear response function of
the uniform gas, defined by

X(q) -=n, (q)/'v, (q),

v, (r) is then given

v, (r) = (2/t) '/2fexp(i q ~ r)[n, (q) jy(q)]dq, (6)

provided only that the right-hand side exists.
In the present paper I shall demonstrate rigor-

ously the u-representability of a broad and very
important class of densities, n(r), for a Schro-
dinger problem defined on a lattice, r, and en-
closed in a box. I impose vanishing boundary con-
ditions on lattice points on the surface of the box
and assume that the density n(r) ) 0,' except on
the boundary points.

I shall then prove the following:
Theorem. If n(r) is a VB de—nsity, then so is

n'(r) = n(r) + pm(r), where m—(r) is arbitrary [ex-
cept for the trivial conditions Qm (r) =0, m (r) =0
on the boundary], provided that t1 is small enough.

Proof. —Consider a system of /V particles. The
ground-state wave function, +(r', . . , r "), is d.e-
fined on the points of a finite cubic lattice, of lat-
tice parameter a, and is required to vanish on
the boundary points. The external potential, de-
fined on the lattice points, is denoted by v(r).
The discrete Schrodinger equation satisfied by +

now look for the perturbing potential, v„associ-
ated with n„

v (r) =v, +Zv, (r)

Let us assume that both n, (r) and v, (r) can be
represented as Fourier i.ntegrals and write
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is then

Q(- ~(v')'+v(v'))+ v Z, , E,I—, l~'-r'I

Then

(+ e'4) =Q
I
c I'E„'

=E,'+Z, I c„ I
'{E„-E, ). (15)

x4(v', .. . ,r") =0,

where all v' run over the lattice points r and V'
is the discrete Laplacian, &'f{r)= a '[Q ( f(r + 6)
—6f(r)], where the six vectors & describe the
displacements to the six nearest neighbors. Let
us denote by iV the number of interior lattice
points. The Schrodinger equation is a set of
M" linear equations for the M" unknowns
+{r',. .. ,r") Th. e wave function is antisymme-
tric and normalized,

E' =[E +A2y'+ O(AS)]+lou)(r)n'(r),

where y'&0. Adding Eqs. (13) and (16) gives

(16)

{E+E ) ={E+E)+~'(y+y )

- aalu) (v)[n(v) -n'(v)]+0(x'). (17)

Since by first-order perturbation theory the coef-
ficients c„(n&0) are not all zero to first order in
&, comparison of Eq. (15) and Eq. (13) shows that
y&0. Similarly

The density is defined by

(8) This establishes the lemma,

n'(v) -n(r) =O(X). (18)

and, in view of (8), satisfies the equation

(9)
Before proceeding further I want to automatical-

ly insure the condition Qm (v) =0 and Qu) (r) =0.
To this end I introduce the complete I-dimen-
sional orthonormal basis

n(r) =N. {10)

I shall now, as a preliminary, prove a lemma
for this discrete model, following the reasoning
of Ref. 1. Let

u, (r) =M "'; u, (v), l =2, 3, . .. ,M.

Because of the orthogonality to u» one has

g„u, (r) =0, l =2, 3, . . . ,M,

(19)

(20)

n'(r) =-n{v) + m (r; ur), (12)

then m (v;u)) is nonvanishing on at least some in-
terior points. '

Furthermore, if m is of first order in a small
parameter A. (u) -Au)), m is also of first order in
~, as I shall now show. Denote the Hamiltonians
corresponding to v and a' by H andiI', respec-
tively, and the corresponding ground-state ener-
gies by E, andE, '. Then, for small ~, if follows
from the Rayleigh-Ritz principle that

v '(r) -=v (v) +(v (r),
where u)(v) is arbitrary except that it is small
enough so that the ground state, +' correspond-
ing to v'(r) is also nondegenerate. Without loss
of generality we can assume that Qu)(v) =0, since
a constant u)(r) is trivial. Then, following Ref. 1,
one can show immediately that if we write the
new density n'(r) associated with v'(r) as

so that we now write,

u) (r) = Q A, u, (r), (21)

M

m(r) = QB,u, (r). (22)
3=2

Because of the nondegeneracy of the ground state
4, the Schrodinger equation provides a continuous-
ly differentiable mapping of the (M —1)-dimension-
al space of A, on the space B, (l= 2, . .. , M),

(23)
l=2, . .. , M,

where the A, ' are finite positive numbers.
I now show that the Jacobian of this mapping

at the origin of the A space is nonvanishing and
finite. For near A, =0, the B, can be calculated
by a convergent power series (recall that we are
expanding around a nondegenerate ground state),

E, =(+,a+) =(@,e'@)+[&,(a -a')+]
= [E,'+x'y, + O(n. ') ]-

aalu)

(r)n (r).

B) &%.A~ +-&M) ~'AaA»' + ~ ~ ~

(l, u, u'=2, . . . , M).
(24)

The coefficient y is positive definite. To see this,
expand + in the orthonormal eigenstates of H',

(25)

At A, =0, the Jacobian of this transformation is

8(B„B„... , B„)/s(A„A~, . . . , A„)

~ =Z.c.~.', E I c. I'=1. (14) =DetIM, „I.
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If this determinant were zero, there would exist
a set of nonvanishing coefficients, g~, such that

Mi~&a =0 (26)

so that the corresponding B, would vanish to first
order in the A.„. The associated potential per-
turbation, Au(r) = A+2~A„u„(y), would thus lead
to a density change vanishing to first order in A.,
in conflict with the lemma, Eq. (18).

Under these circumstances we can apply a the-
orem on inverse transformations' which states
that there is a finite neighborhood enclosing the
origin in B space, iB, i &B, ', such that every
point inside this neighborhood is mapped in a con-
tinously differentiable way on a unique point in
g space,

A, =G, (B2, . .. , B„);
1=2, . . . , M, iB, i (B,'.

(27)

This completes the proof of the theorem.
We can express this theorem in the following

geometric language. Every density, n(r), of an
N-particle system can be represented by an 3f-
dimensional point, n, with coordinates (n(~, ), . .. ,
n(r„)), lying on the plane, 8, defined by Qn(r)
= N. The theorem states that if n(y) is VR, the
corresponding point, n, is in the interio~ of an
(M-1)-dimensional VR manifold located on the
plane S.

An important question often asked in the con-
text of density functional theory is this: Given a
density distribution n(r), how can we know wheth-
er it is VH~ For a lattice we have proved that it
is VB, provided it is sufficiently near a density
distribution known to be VB. awhile in this note
nothing is mathematically proved about the con-
tinuum problem, it is virtually certain that, sub-
ject to appropriate conditions of regularity and
asymptotic behavior, similar theorems will ap-
ply. In physical applications of density function-
al theory one is aiming at the physical, and hence
VR, density n(~). Consequently, if one has some
reasonable notion of what the physical n(r) is, one
will work with trial n(x)'s "near" it. Their U-

representability is thus not a matter of excep-
tional accident but guaranteed if, in an appropri-
ate sense, they are sufficiently ' near" to the
physical n (~)

I conclude with two remarks about the Kohn-
Sham (KS) equations. ' These equations presup-
pose that a physical n (v), which is necessarily

VR for the intemcting Schrodinger equation (VR-
I), is also VR for the noninteracting Schrodinger
equation (VR-N). If this is the case, the consid-
erations of this paper also provide support for
the use of the KS equations, which presuppose
the existence of I', [nj, the noninteracting kinetic
energy functional, for densities in a neighbor-
hood enclosing the physical u(~).

However, obviously the physical density n(x)
need not necessarily be VB-Ã. Clearly, the den-
sity n K, (v) obtained from the Kohn-Sham equa-
tions with some single-particle —necessarily ap-
proximate u—,tf(&) is VR N. I-f nKs is sufficient-
ly near the physical ~(&) (which may be difficult
to know), then, a posteriori, the considerations
of this paper imply that the physical n(|') is both
VB-I an.d VR-N.
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