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It is shown that quantum gravity with a cosmological constant in a purely affine picture
is a power-counting-renormalizable (unitary) theory. The relevance of such a result is
based on the equivalence, proved by Kijowski, of the affine formulation of gravity with

the standard affine-metric picture.
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The quantization of the gravitational field in
the purely metric picture, in which the metric
tensor g„„is regarded as an operator-valued
distribution, gives a nonrenormalizable quantum
theory. ' The nonrenormalizability in the metric
representation is a consequence of two features:
(i) the dimensionless nature of the dynamical
variable g„„a.nd (ii) the presence of the inverse
quantities g"" in the Einstein Lagrangian (-g)'~'R
=g g„&, with g" =(-g)' 'g a.nd R„s the
Ricci curvature tensor. This makes the Lagrang-
ian an intrinsically nonpolynomial one, when
expressed in terms of purely covariant or con-
travariant components of the metric tensor. '

From the physical point of view, however, one
can argue that, as implied by the equivalence
principle, gravity is associated with a linear
connection I'„,". This suggests that gravity is
a gauge theory of the diffeomorphism group of
the base manifold, ' much like the theory of the
other fundamental interactions. In this picture,
the metric of the space-time would play the role
of a Higgs field, breaking the structure group of
the theory down to its isometry group. The fact
also that all gauge theories are renormalizable
in terms of the Yang-Mills connection A. &' leads
us to infer that one of the correct dynamical
variables for quantum gravity could be a linear
connection I"&„.' This approach is also mo-
tivated by the fact that a purely affine version
of the gravitational interaction is described by a
Lagrangian which is the square root of a poly-
nomial. The relevance of such a formulation of
gravity is based on its equivalence with the
standard metric-affine picture (the so-called
first-order or Hilbert-Palatini formalism ),
which was proved at the classical level in Ref. 4.
In this Letter I show, by power-counting argu-
ments, that in the purely affine formalism pure
gravity with a cosmological constant is a re-
normalizable (and unitary) theory

I start by recalling the basic idea of Ref. 4,

g"'(x) = ~Z, „/~R„,(x) (Ib)

with respect to R 8. Here the "gravitational
momentum" g, which is a symmetric tensor
density of weight +1 and of canonical dimension
+2 (in units with k = c =1), plays the role of the
contravariant metric field' k '(-g)'i'g" with k
=(16~G)'i' the Einstein gravitational coupling con-
stant. Thus one can show4 that the Hamiltonian
equations

Rn s = —&&~/8' ", (2a)

V„g~"= nX /6r „," (2b)

(V stands for the covariant derivative of I' s')
are completely equivalent to the Euler-Lagrange
equations

6kuJ5g" = 0, (3a)
~a~~ r„,"=0 (3b)

where it is shown that the standard metric-affine
Lagrangian picture of gravity coincides with the
Hamiltonian description (in the sense of the
classical mechanics) which one could obtain with
a "Hamiltonian*' 3C ~(g, I') defined by the Legen-
dre transformation of a purely-affine Lagrangian
C»(r, sl') =S»(I', R). Let us observe that
Kijowski's original formulation4 concerned a
coupled gravity-matter system, but it works also
for pure gravity with a nonvanishing cosmolog-
ical constant. In the following I restrict to the
latter case. Therefore RpA(i' R) represents
only the "purely affine gravitational Lagrangian"
constructed only from a symmetric linear con-
nection I"„, = 1"(„,~" and from its first deriva-
tives, and R„„=R(„,i (I', &I ) is the symmetric
part of the Ricci curvature tensor R„„of I'„„

One has

X (g, I )=g'R„,(g, r)+Z, „[i;R(g,r)], (1a)

where R s in Eq. (1a) is now treated as a func-
tion of g and I'&„which one obtains by solv-
ing the canonical conjugate momentum definition
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(8b)

in which ZM„(g, I') is the Hilbert-Palatini Lagrangian of the usual metric-affine picture of gravity.
Explicitly, we can take as the purely affine Lagrangian in Eq. (la) the Eddington one'

Z, „(r,Z) =(2/)(.)[-Det(Z„,)]'~',
(4)

Z„„(r,ar)=a(„„)(r,&r)=S r„, —S(„r„) "+Ip rp r p r
p rp r(p ) Det(K„„)go,

where A. is a dimensionless (in units with R=c=1)
positive real constant. Obviously, Det(K„„) is Here I have set
a polynomial in the connection 1"„, and in its
first derivatives. The canonical conjugate mo- z[g, r, er]=g" Ic„,(r, ar),
mentum is

p I'
~A,

~2 ~ jl v

~pa~ PP PP P

(5a)

(5b)

g)'" =()Z,A/m„„
=A. '(-minor E„,/[-Det(K„„)]'i~],

where the numerator on the right hand side
means the subdeterminant of the member K&„.
We may now (uniquely) associate with g"' the
two tensors g"" and g„, defined by

i"'=i'(-g)-"g"", g-=Det(g. 8) =&'Det(g"'),

S to'"=S6 S"'=~ ".
Then (1b) is equivalent to

(8c)

One recognizes immediately that L MA in Eqs. (8)
is Einstein's Lagrangian in first-order form (5)
with a cosmological constant A. Of course, the
usual purely metric picture "a la Einstein" fol-
lows from MA by a variational principle in the
sense of Hilbert-palatini. '

Having shown that classically (4) is general
relativity itself with a A term, we now prove
that, in the affine representation, quantum grav-
ity is a power-counting-renormalizable theory.
For this goal we need the (Heisenberg) field
equations associated with (4). These turn out to
be of the form (see Ref. 4)

Now, the transformation from the purely affine
picture to the metric affine one consists in solv-
ing Eq. (5a) with respect to X„„. In this way we
get

p 0'. 8 p a a8 p (u g)y

Det(rf. ,) ~ O —r„, gO,
(9a)

so that the Legendre transformation (1) reads

X;MA(g, r) = -2)(.4 '(-g)~'. (7)

At this point, one can easily check that the
Hamiltonian equations (2a) and (2b)

K 8=-()X~/()g 8=)(A '(-g)'~'g (),

v g"' = a((.'MA/()r„„"=0

are equivalent to the Euler-Lagrange equations
generated by a Lagrangian 4~ defined as

Z (g, r) =-n-'(Z[g, r, ()r]-2W)(-g)'i'. (8a)

where D -=~, + F, and K is required to have the
correct signature. Equations (9a) are clearly
polynomial in I" and its first derivatives. In
contrast to the nonpolynomiality of the Eddington
Lagrangian (4), such a feature suggests that we
could develop the quantum theory starting from
(9a). So we split I' into a fixed classical part, r,
and a quantum part, y, i.e., we set F~~ = I"
+ v A, y„()'. Notice that it is always possible to
assume that the base manifold M has a metric
structure g and to choose I to be the Levi-
Civita connection of g. Thus, in the limit of a
flat background space-time M, Eqs. (9a) turn
out to be of the form

q Q p +2~~IVx( T) Yp) +Yq( sg p) g ] 70( xp)p +x

in the gauge condition

(9c)

The gauge condition (9c) has been set to eliminate
the four arbitrary gauge freedoms due to the
diffeomorphism group of M However, (9c) does
not fix the volume-preserving diffeomorphisms

~"=&"(x)with s„&=const, so that an other
gauge condition is set, namely

g[a X) 0Xp p (9d)

where the index of the derivative is raised with
the flat background metric. It follows by Eqs.
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(9) that the large m-omentum behavior of the bare
Feynman rules in a typical one-particle irreduci-
ble diagram with I internal lines, ' V, three-ver-
tices, V4 four-vertices, and I- loops is given by
(up to ghost's contributions)" I factors

-(p'+i) ';
V, factors

- (g)+' xp.

V4 faCtorS

(10a.)

(10c)

and I factors

(10d)

Note that the asymptotic behavior of the Feynman
propagator for the bosonic variable y„, has in
the gauges (9c) and (9d) the correct form to give
a unitary theory. Therefore, we do not expect
unphysical poles (such as the Lee-Wick ghosts)
other than the usual Faddeev-Popov ghosts. "
Let ce ~ be the dimension of the interaction mo-
nomial (up to coupling constants) attached to
the vertex V, that is"

v=+v+~v~

with nr (ir) the number of derivatives (internal
incident bosonic lines) at the vertex V; we find
that

tUy = 4 =Ay
3

Equation (12) tells us that each gravitational
interaction monomial in the purely affine picture
has degree w~ =4 and hence, according to power-
counting arguments, it is of a reno~malizable
type

The fact that the renormalization properties of
quantum gravity depend so dramatically on the
parametrization of the fields was suggested also
by Salam, ' who explicitly introduced an "exponen-
tial parametrization" of the metric field in order
to obtain finite answers. However, one should
note that in the present ease the reparametriza-
tion of the fields (i.e., the passage from the "con-
figurations" I'&„„~ to the "momenta" g " ') is
performed by a Legendre transformation, while
in Ref. I it is an algebraic substitution. One may
say, as it has been shown, that the metric-affine
picture' plays the role of the Hamiltonlan version
of the purely affine theory. 4 Accordingly, one
expects that the 8 matrices of the associated
theories become identical, although their Green's
functions are not necessarily the same because

of differences in the definition of the renormal-
ization conditions. In the path-integral formal-
ism, this fact means that the unxenoxmalized
vacuum-to-vacuum amplitude of the affine, Zph,
and of the metric-affine, ZMA, theories should
be equal. "

The formal equivalence Z»-ZMA may suggest
a prescription to define a "renormalized" quan-
tum gravity in the metric representation. Accord-
ing to the present power-counting argument,
ZpA can be renormalized yielding a generating
functional Z pA for the renormalized quantum
theory. Then one could define the standard re-
normalized metric -affine generating functional
ZMA to be Z» under the lift to 4p~ of the
Legendre mapping. '

The author is deeply indebted to Professor D.
Amati, P. Cotta-Ramusino, S. Deser, M. Franca-
viglia, S. Fubini, J. Hartle, C. Isham, W. Israel,
T. Regge, M. Tonin, and A. Treves for many
useful discussions. Particular thanks are due to
my colleague C. Reina, with whom this research
program is in progress, and to Professor G.
Occhialini for his careful reading of the manu-
script.
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