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Baryon Number in Chiral Bag Models
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When a massless, isospinor Dirac field is confined to a finite region of space by means
of a chiral boundary condition parametrized by an angle 8, the baryon number of the
vacuum is shown to be ()t /2n) (6 —singcos6) where r is the Euler characteristic of the
bounding surface. Some implications for chiral bag models are discussed.

PACS numbers: 12.35.Ht, 02.40.+m, 11.30.Rd

There is considerable interest in a class of
phenomenological, chirally invariant bag models
in which the confined quarks are coupled to mes-
on fields at the bag's surface. " Some time ago,
Chodos and Thorn described a spherically sym-
metric, "hedgehog" solution to an SU(2)x SU(2)
chiral bag model in which the isospin index of the
meson field points radially: s~(r) =r~f (r). There
has been a recent revival of interest in the hedge-
hog solution'4 spurred in part by Witten's pro-
posal' that baryons may be described phenomeno-
logically as the solitons of nonlinear chiral mod-
els, much in the manner proposed by Skyrme'
over 20 years ago. It has become apparent that
the nature of baryon number must be reexamined
in these models: Skyrme and Witten showed that
the meson-field configuration carries a topologi-
cal charge which they propose to interpret as bar-
yon number; Rho and his collaborators and Gross
have noted that the quark spectrum in chiral bag
models is not symmetric about zero energy and
therefore that the quark vacuum can carry bar-
yon number.

In this Letter we give a calculation of the bar-
yon number, N, of the quark vacuum in a slight
generalization of the model of Chodos and Thorn.
We study the Dirac equation, iy" ~„q=0, inside
a static, three-dimensional region, V, bounded
by a smooth surface Z. Z need not be connected
and V need not be simply connected. q is in the
fundamental representation of an ungauged SU(2)
symmetry group which may be identified with
ordinary isospin. On Z, q obeys the boundary
condition

-iy ~ nsq(p) = exp(t~ ~ nay, 6)q(p) —= U(p)q(p), (I)

where 7„k=1,2, 3, are the Pauli matrices, and
n is the unit, exterior normal to Z. (Chodos and
Thorn studied a sphere. ) We find that the baryon
number depends nontrivially on 0 and on the to-
pology of Z but is otherwise independent of its
geometry:

N(8) =)((8 —sin8 cos8)/2g, —rr/2 & 8 &7r/2. (2)

Outside the interval [-7r/2, 7r/2], N(6) is given by
N(8+rr) =N(8) )( is t.he Euler characteristic of Z
(equal to twice the number of pieces of Z minus
twice the number of handles). Our result dis-
agrees with the result quoted in Ref. 3.

The baryon number of the vacuum is defined by

N(8) =--.'Iim 5 s(E„)exp(-t~E„~), (2)
t~+0 n

where the sum is over all positive- and negative-
energy single-particle eigenstates. This is a
regulated version of Jd'x —,'[g"(x), g(x)]. [The
mathematicians' define a "spectral asymmetry"
r)(0) as the value of rj(s) =Q„e(E„)~E„~' at s = 0.
If our N is finite, N= ——,'r)(0)]. A CT transforma-
tion, q —iy y5q, transforms 8 to —9 and E„to
E„,and s-o N( 8) = -N(8-). A discrete chiral

transformation q-y, q transforms 0 to 8+m, so
that N(8 +ir) =N(6).

We study dN/d6, given by

—= —,
' lim t g " exp(- t

I E„l)dN I . dE„
t~+0 n

(4)

except at those values of 8 at which some E„=O,
when N jumps by + 1 if E„changes from + to +.

By use of the Dirac equation and the boundary
condition it is not hard to relate dN/d6 to the lim-
it of a surface integral involving the Euclidean-
spa, ce Dirac Green's function, Ss(x, x') [where x
=(x,x,), etc.],

(5)d8
—= —4ilim )frd s& Trp nsy, y ~ ns[Se'(p, p') —Se+(p', p)]j.

Here p is a point on Z; p= (p, t)) and p' = (p, 0). S'(p, p') is the limit of Ss(x,x') as x- p and x'- p from
the interior of Z. y and y4 are related to ordinary y matrices by y = —iy a,nd y4 =y'.

Equation (5) can be derived in another, more physical, way. Consider the vacuum expectation value
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of the baryon-number current, (j (x, t)), on the surface in the presence of a time-dependent chiral an-
gle 8(t). Although n&. (j (p, t)) vanishes when calculated naively with use of the boundary condition (1),
we find a finite anomalous value proportional to 5 when we define j carefully using time splitting. Fur-
ther, as is to be expected for such a short-distance effect, we find a local expression for this anoma-
lous current. ( j {p,t)) is related to the Dirac Green's function in the presence of a time-varying 8.
With use of the boundary condition, Eq. (1), it is possible to extract an explicit factor of 8 from ns
~ (1 g, t)). If we define dN/dt = 8dN/d8, a short calculation yields Eq. (5).

To evaluate dN/d8 we employ a reflection expansion of the Green's function Se (x, x'), '

ing K(n, ) through S'(a;, a, ). Indeed, if $(x) is
generated by a Dirac distribution. on Z,,(,)

1 ~4 y, '(x-x'),
271' „,(x -x')' g(x) = f d'n S'(x, n)rl(n),

then'

S, (x, x') =S'(x, x') + f d'n S (x, n)K(a )S'(n, x')

+ f d'n, d'a, S'(x, a, )K(a, )S'(n „n,)E.(a,)S'(n „x')+. . . ,

where f d'n denotes f "„dn,fzd's„, S'(x, x') is
the free Euclidean Green's function

(6)

K(n) =U(o ) -y'n„. (6) lim ((x)-=g'(p)
x~g

This expansion for S (with 8 =0) is derived and
discussed in Ref. 8. The case 6+ 0 is a straight-
forward generalization. The integrations in Eq.
(6) are singular as x or x' approaches a point p
on Z. There are, however, no singularities in
Eq. (6) as n;-n, because

lim K(n, )K(a ~) = 0
0 ~C'

Z

where K(n;) =U '(n;) +y n~ results from mov-

=-.'y' n, ri( p) +f d'a S'(p, a)ri(n). (io)

The apparent singularity in the a integration in
Eq. (10) is regulated by a principal-value pre-
scription: One excludes a small three-sphere
about P, performs the n integration, and then
shrinks the sphere to zero.

With use of Eq. (10) it is possible to obtain a
reflection expansion for Se when x and x' both lie
on Z:

lim Se(x,x')=—Se'(p p') = —'[1+y nBU(p)]Se(p, p')[3 —U(p)y ns]
x~8

x' 8'

cohere Se(p, p') is defined by Rq. (6) xoith x and x' set equal to p and p' under the n integrals Substitut-.
ing into Eq. (5) yields

~ f, d",T.f. ,y,[y-,.U(P)1[S.(P, P ) S.( P,-P)1 ].
'/~0

The virtue of the reflection expansion for S~(p, p ) is that successive terms are successively less
singular as q - 0. In particular it is possible to show that S'(p, p') - 1/ri', Se'(p, p') - 1/ri', Se'(p, p')- I/ri, and Se (p, p')-O(1) (m) 3) as q-0. Here Se"(p,p') denotes the kth reflection, i.e. , the kth term
in Eq. {6). S' and Se' do not contribute to dN/d8: They do not have sufficiently rich Dirac and SU(2)
structure to survive the trace operation. Thus, the entire contribution to dN/d8 comes from the sec
ond reflection. To evaluate this explicitly we make use of the fact that an O(l/q) term in Se'(p, p') can
only arise from that region of integration where n, and n, approach P or P'. The (smooth) factors
K(n, ) and K(n, ) may be expanded about n =P. The only term even in 8 which survives the SU(2) trace
is proportional to sin'8ns ~ (n xn„,). The triple scalar product of the normals is proportional to the
Gaussian curvature x {p) of Z at p. The coefficient of I/q in Ss'{p,p ) can be evaluated by explicitly
performing the a integrals, giving

dN 1 . 2
"

2 1, sin 8 d sz x(P) = —
y sin 8

d0 2p'

by the Gauss-Bonnet formula where y is the Euler characteristic of Z.
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In fact, the only local expression for n ~ ( j ) of the correct dimensionality and the correct transfor-
mation properties under SU(2)ix SU(2)a and the discrete symmetries is

(14)

where M =e" ", X, p, , parametrize the surface,
and C is a numerical constant. ' This gives n
~ ( j (p)) =4C sin'8K(p) which agrees with Eq. (13) if
C = —1/8m'. C can be determined by noting that
for a sphere fo" (dN/d8)d8= —8~'C, while we know
that V(0) =N(m) =0 and that one E„crosse szero
from —to + so that N jumps from + & to —2 at 0
= m/2.

We can verify that dN/d8 =0 at 8 = 0 for a sphere
using Eq. (4) directly. Let L be the orbital angu-
lar momentum, 5 the spin, T the isospin, Z = L
+5, K=L+5+T. At 8=0 the energy levels are
classified by I

Jl'= j( j+ 1), j = —,', 2, . . . , and are
2(2 j+ 1)-fold degenerate Fo.r 8o 0, each such
level splits into two, classified by IKI'=k(k+1),
k = j+ —,

' (=0, 1, 2, . . . ). We find that the average
of dE/d8 over each set of 2(2 j+ 1) degenerate
states at 8 = 0 is zero, and hence that dN/d8 = 0.
The result of Ref. 3 was based on the view that
only k =0 contributes to N, and so the source of
our disagreement is clear.

Equation (2) follows from Eq. (13) provided that
the only jump in N for 0- 0 ( n is ——,'y as 0 in-
creases through —,m. For 8 =p/2 and E = 0 the
Dirac equation and boundary condition become
very simple,

00' pq=0, o ~ nq=y v-nq on Z, (15)

where 0, =iy'y', etc. are the Pauli spin matrices.
By using a representation with y' and (0+7)' di-
agonal we can show that there is (i) one solution
with y'= —1, o +r =0, and q constant; (ii) one so-
lution with y'= —1, (v+~)'=8 for every solution
of w ~ E=~x E=Q with nxE=0 on Z; and (iii) one
solution with y =+1, (v+w) = 8 for every solution
of V ~ v=V& v=0 with n ~ v=0 on Z. Here E and v
are just q in an appropriate representation. Com-
paring case (ii) with electrostatics we see that if
Z has n, pieces there are n, —1 solutions, and
comparing ease (ii) with a fluid-flow problem we
see that if Z has n, handles there are n, solutions.
We ean further show that solutions (i) and (ii)
have dE/d8 ) 0 and solutions (iii) have dE/d8 (0.
Thus N(v/2+0) —N(w/2 —0) =n, —no= —~y. We
can also show that there are no E =0 solutions ex-
cept when cosH =0, and our result for N(9) fol-
lows.

Our result supports the conjecture that the top-
ological charge in the Skyrme model be identified

with baryon number. The topological charge of
a hedgehog configuration of the meson field sur-
rounding a bag of arbitrary shape can be comput-
ed following Skyrme and Witten:

N(8) = —X (8 —sin8 cos 8 )/2 p

Here U(r) = exp[is ~ p(r)/f, t is the nonlinear meson
field and w = 0 at infinity and 7/f =n8 on the bag's
surface.

We are led to the following amusing picture of
the transition from the quark-model limit for
large bags to the Skyrme limit for vanishingly
small bags. Let us follow a spherical bag (radi-
us R) surrounded by a hedgehog meson field con-
figuration (n =nr) as R decreases adiabatically
from very large values (R» 1/f, ) to very small
values (R «1/f„), accomplished, for example, by
changing the bag constant B. At large R we place
a single quark in the lowest (nondegenerate) bag
eigenmode. "

n (y) is determined dynamically':
w(R)/f~ = 8(R) varies smoothly from zero at large
R to —n as R-0. According to Eq. (14), the top-
ological charge N varies from zero as R - ~ to
unity as R —0. The baryon number on the quark
fields begins at unity at large R [N(0) = 0 but a pos-
itive-energy mode is occupied]. As R decreases
and 8- —g the baryon number of the quark state
decreases adiabatically to zero. When 0 passes
—z/2 the baryon number of the vacuum jumps by
unity as the newly appeared negative-energy lev-
el is filled. In the state we are following it was
never empty. The sum of the baryon number in-
side the bag and the topological charge outside
remains unity for all R. The quark configuration
inside the bag begins at large R as a filled nega-
tive-energy sea plus a single occupied positive-
energy mode. As R decreases the occupied mode
drops into the sea and, eventually as R - 0, the
quark configuration inside the bag is the trivial,
symmetric (8 = —w) vacuum.
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