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Diffusion and Localization in a Dissipative Quantum System
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The motion of a quantum mechanical particle is studied in the presence of a periodic
potential and frictional forces. Depending on the parameters, the behavior changes from
diffusion to localization.
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contained in the frictional constant g. The poten-
tial is chosen to be V(q, ) = -gcosq, +E,q, .

Alternatively, the time-dependent driving force
E, may act as a source in the generating function-
al defined by

Z[E,] = J Zq, exp(- S,tt). (2a)

Recently, Leggett' has drawn attention to the
problem of quantum coherence in connection with
a macroscopic degree of freedom coupled to a
dissipative environment. Subsequently, this prob-
lem has been studied for a system with a double-
well potential. ' There, coherence is said to be
absent, if the particle--which is short for degree
of freedom —is localized in one of the two wells.

In the following, the motion of a particle in a
periodic potential is studied and its mobility will
be calculated. From a formal point of view, this
problem is equivalent to a system of one-dimen-
sional charged particles which interact with a
logarithmic potential, . An important feature is a
duality transformation (methods I and II) which is
a mapping of parameters such that diffusive and
localized behavior appear interchanged.

A Feynman path-integral formulation in "imagi-
nary" time is of superior advantage in the discus-
sion of dissipative systems. ' There, the coprdi-
nates of the environment can be "integrated out"
such that in the end one is left with an effective
action Seff =Sp+Slnt~

The functional integral extends over all paths q, .
The two-point correlation can be calculated as
follows:

&q,q, , ) =Z 'bsZ/eE, bE, ,l, , (2b)

This quantity depends only on the time difference
7 -T', its Fourier transform will be written
shortly as (qq) . Then, the (dimensionless) mo-
bility is given by

p(~) = rtl ~
I &qq&. (3)

Strictly speaking, the analytical continuation of
p in the complex half-plane Re~ &0 is required.
At zero temperature, however, the important
limit ~ -0 can also be obtained from real and
positive co. Thus, it is allowed to conclude that
the quantum mechanical particle is diffusing, if
p(+0) &0; and that is is localized, if p,(+0) =0.

Method I.—We introduce Fourier transforms
and write

S = dT-mq +—1 0 2

2 '
4m

-q

S;„,= JdT V(qr).
s, = ,' J (d~/2~)~ 'Iq I'-, 'D '=~~'+ql ul.

The strength of the coupling to the environment is
l Next, we expand

p, "= 5(T —7,) +. . . + 5(7 —Tn) —b(T —7 „„)—.. . —5(7 —r, )u
to be the charge density. Thus, we obtain

Z =CQ JdT~. . . d7s„[(g/2)"/iV i]'exp{—s Jd7 dT'[i E, +p„"]D«[iE, +p, ,"]],

exp(g Jd~ cosq, ) =Q dT, . . .dr„(-- g exp[i JdT&e, b(r —T,)q,]..(g/2)"
n O + ( j /=1e

The quantities e, =+1 may be considered as charges of classical particles located at 7, . Since D -,
= 0, the functional integral with respect to [q„] can only be performed if the time average of Er
+ iQe;5(T —v, ) vanishes. This means that the total charge Qe, of the particles has to be zero; hence
n=2IV and we have a neutral plasma. There are n i/(IV I)' equivalent ways to distribute the charges on
the coordinates; I chose
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(6)

w here C =(detD) '/'. This expression can be in-
terpreted as the grand canonical partition function
of a neutral plasma (excepting the source I",).
The interaction potential between the charges is

D« ~ -—f(de/2v) D„exp —i u&(r —7' )

-(1/2q)v, r «1,
(5)—(1/~g)lnr, ~ » 1,

where r = (q/m)! r - r'!, At short distances the
interaction is Coulomb-like, whereas at large
separation, it is dominated by a logarithmic de-
pendence.

Next, we calculate

(g&g&i) =D&&i —JWrd1' D&&(p~p&i)D&~&t,
where (p,p, ) is the charge-density correlation
function of the plasma. Again, it depends only on
the coordinate difference 7 —T', its Fourier
transform will be written as (pp) =S„. Then
the mobility assumes the form

u(~) =1-D S
[with an unimportant prefactor (1+m! v!/g) '
omitted]. Note the similarity of Iu(&u) with the in-
verse static dielectric function I/e(q) of a Cou-
lomb plasma. 4

Method II.—The second method (instanton
technique') is correct asymptotically if

s =8(mg)'/2»1; s» q. (7)
!

8~ 7-T~ ~

which are approximate solutions of the classical
equation of motion, q, = q, ", provided that! 7,

Of importance will be the Fourier
transform

—i~@ =h Q,e, exp(i( r, ), (Sb)

where h~ is the Fourier transform of f (r); h,
—27T.

Next, we calculate S,ff[q]. In order to remove
a constant (yet infinite) term, we replace -gcosq
by g[1 —cosq]. Then, we obtain

One argues that in this limit, the tunneling of the
quantum mechanical particle between adjacent
minima of the potential -gcosq (that is, q = 2')
can well be described in WEB approximation.
There, the path q, " which corresponds to the
classical motion of the undamped particle in the
"inverted" potential leads to a predominant con-
tribution to the path integral. Hence, mg, '
-gsinq, ' =0, and there are kinklike solutions
(instantons), where q, " just changes by + 2m in a
lapse of time ~, ' = ( X/m) ' '. For instance,
there is a solution f(T) =4arctanexp(&u, v). Fur-
thermore, one can construct a sequence of kinks
(e, =+1) and antikinks (e, = -1) located at the posi-
tions &jp ~ ~ ~

S f f [q] = us + ,' Q,„e,e—,Z, , ,„+iJ (d (u/2w) (E h~/cu)Q, e, exp(i&us, ).

—Q. gp, p «1,
—4&ply, p» 1,

(10)

where p = ~, !7 —r'! and o. is of order unity. It is
important to note that the above result can only be
obtained if Qe, =0; otherwise, the action is in-
finitely large. This means that rs = 2N.

A few steps in the ensuing procedure should be
explained. The functional integral is reduced to
integrations with respect to the positions of the
kinks such that r, &r, «. . . 7» (summation with
respect to N included). Further, the Gaussian
fluctuation around q, can be included if one re-
places e ' -y/2=F 0(2s/n)i 2e '. Eventually, one
arrives at an expression for Z[E] very similar
to Eq. (4) except for two differences: (i) the triv-
ial replacement D« —6«, g-y; and (ii) dif-

One recognizes an effective interaction between
kinks and antikinks which involves an interaction
potential

a„.= J(d(u/2~)h'(&u)(q/! (u! )exp —i(u(r —7')

!ferent functional form in which the source I",
enters. Note that (ii) leads to an expression for
the mobility,

p,(&u) = a(uz„,

which differs formally from Eq. (6). On the other
hand, Z differs from S only by the replacement
(i).

Considering Eqs. (6) and (11), we conclude that
0 - p-1. Essentially, p(+ 0) depends only on q
and s (the scale in the time variable is irrelevant).
For the sake of definitiveness, I will use the ter-
minology of phase transitions in the discussion of
this dependence. Possible candidates for differ-
ent phases are (Ai) p=-0, (&2) p, =—1, and (&) 0& p

The two representations for p, can be mapped
onto each other if one is allowed to neglect differ-
ences in the core regions of the interaction po-
tential D„and &„. Then, we may use the
substitution p. -1- p; 2&q-1/2ng; rng/g-y/ua
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(this also takes care of the difference in the time
scale), The fixed point of this mapping is 2mg*

=1; s*=1.5 [unfortunately, Eq. (7) is not strongly
satisfied]. At this point, there is either a transi-
tion between phases &, and 4„or there is phase
8 with p= —'.

A renormalization technique has been developed
by Anderson and Yuval' for the problem of a one-
dimensional plasma with logarithmic interaction.
They consider only the case of ordered charges
(+ —+ —+ —.. . ); the difference may be relevant,
but it will be neglected in the following. Accord-
ing to their result, g scales to zero if g is small
and g&g*. The same is true for y, if g&g*. The
most plausible interpretation of this result is that
p. =—0 and p=-1, respectively, in these two regions.

A phase diagram is shown in Fig. 1. Accord-
ingly, one expects the particle to be localized'
only in region&„where p&g* and where s is
sufficiently large. In regions &, and &, the par-
ticle is expected to show diffusive behavior. Con-
sidering the differences between & and &„one
may speculate that in region 8, diffusion will be
incoherent or stochastic, whereas in region &„
diffusion is a coherent and regular process. '

The results of Ref. 2 on the behavior of a
damped particle in a bistable potential are con-
tained in the upper part (s -~) of Fig. 1. The in-
terpretation of their results is unambiguous in
region &, where the particle is localized in one
of the two wells. However, it is not clear wheth-
er in region B the tunneling is coherent (in the

4

sense of a beat phenomenon) or incoherent (in a
stochastic sense).

The above statements apply only to the case of
zero temperature (which corresponds to the
thermodynamic limit in the system of charged
particles). No phase transition occurs at finite
temperature.

I wish to stress that the most important feature
of the present model is a frictional force on the
particle proportional to its velocity. Formally,
this means that D '-q~~l for sufficiently small

In the analogous systems of charged par-
ticles this property corresponds to the logarith-
mic behavior of the interaction at large distances.
Other properties of D ' are irrelevant, at least
in the limits s -0 and s -, respectively.

One expects that such a type of frictional force
can only be found for a particle which is macro-
scopic in comparison with its environment. Fur-
thermore, it seems that macroscopic quantum
systems with D '-

q~ ~~ represent cases on a
borderline which separates systems of qualita-
tively different behavior depending on whether' decreases faster or slower than the first
power of ( ~[ in the limit ) cu)-0.

In an experimental realization of the present
model by a resistively shunted Josephson junc-
tion, one has q=h/4e'A, s=(8RCIoe ')' ', where
8, C, and Io are the resistivity (for small vol-
tages; see preceding paragraph), the capacitance,
and the maximal Josephson current of the device.
With tunnel junctions, one is most likely in re-
gion A,. In such a case, it would be most inter-
esting to observe the incipient localization as the
temperature is lowered to absolute zero. '

I wish to thank V. Ambegaokar, S. Doniach,
U. Eckern, and K. D. Schotte for most interesting
dxs cussxons.
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FIG. 1. Phase diagram in (g, s) plane. Phases A,
and A, have p

—= 1 and p =—0, respectively. In &, we
have 0& p& l. At the fixed point (circle) of the duality
transformation, p = 2. The phase boundaries {dash-
dotted lines) are drawn according to Anderson and
Yuval {Ref. 6). The quantum mechanical particle is
localized only in region &,.
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&

B Az corresponds to the transition metal insulator
vacuum.
~Further theoretical investigations will be devoted to

this problem.
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