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Equilibrium Distribution of Hard-Sphere Systems and Revised Enskog Theory
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It is shown that for hard-sphere systems in a constant external potential revised Enskog
theory yields the correct sizgle-particle equilibrium distribution function, whereas
standard Enskog theory does not.
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About ten years ago it was pointed out by Bara-
jas, Garcia-Colin, and Pina' that Thorne's gen-
eralization to mixtures' of Enskog's kinetic equa-
tion for a hard-sphere system' is not consistent
with the laws of irreversible thermodynamics;
specifically Onsager's reciprocal relations were
violated. The same could be shown to be true for
several obvious modifications of Thorne's equa-
tions." In a paper by van Beijeren and Ernst' a
revised Enskog equation was proposed, which un-
der certain approximations can be derived from
the Liouville equation for hard spheres, and
which is completely consistent with irreversible
thermodynamics. For these reasons we believed
revised Enskog theory (RET) to be an improve-
ment over standard Enskog theory (SET). Yet,
there remained doubts whether indeed RET is
preferable over SET (see e.g. Ref. 6), as well as
doubts whether RET is indeed the only straight-

forward modification of SET resolving the prob-
lems mentioned above.

Therefore I have proposed another argument,
which even more compellingly singles out RET as
preferable among all simple modifications of
SET. In a recent paper' Lopez de Haro, Cohen,
and Kincaid quote this argument, but only so
briefly that its content does not become clear. In
this paper I want to clarify the point in some de-
tail.

The gist of my argument is that for hard-
sphere systems in a stationary external potential
RET leads to the correct equilibrium distribution
whereas SET does not. This applies to one-com-
ponent systems equally well as to mixtures. The
starting point is the Enskog equation for an s-
component hard-sphere mixture with constant
external potential 4'; (r) acting on particles of
species i,
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Here f, (r, v&, t) is the usual one-particle distribution function describing the probability density to find
a particle of species i with velocity v; and position r at time t; 0 is the Heaviside step function; v;&
=v, —v;; k is the impact parameter of a binary collision, and runs over the three-dimensional unit
sphere. Finally, o;, is the distance at contact between two particles of species i and j, respectively,
and v& and v; are the restituting velocities for a collision with final velocities v; and v; and collision
parameter k. The difference between RET and SET resides in the definition of the pair correlation
function at contact, y;,-. In SET g&, is defined as the pair correlation function in a uniform equilibrium
state evaluated as a function of the local densities at some point intermediate between r and r, . Usual-
ly' this point is chosen halfway between r and r, but the point of contact and the center of mass of the
bvo particles have also been proposed. In RET g;, is defined as a functional of the local densities
n, (r), which is of the same form as in a nonuniform equilibrium state.

The equilibrium solution of (1) has to be a stationary solution of the form

f; (r, v, ) =n, ( )(rmi3; /2&)" exp(- i3mv; /2).

Substituting this into (1), setting &f; /Ot =0, and using the fact that (2) satisfies f;(r, v )f;(r, , v, ')

(2)
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=f&(r, v&)f;(r~, v;) one obtains, after integrating over v;, the result

&vn, (r) + pn, (r)&C';(r)] =n;(r) g ff(l/I r —r, l)(r -r) ~ v c(r; —r —a';p)y;, (r, r,. l(n]')n, (r )d kd r, (.3)

Next one can use the fact that for a hard-sphere mixture the Mayer functions are of the form

fo(r) =o-(r -o~;) l-

to rewrite (3) in the form

v; - (~ inn; (r) + p &4'; (r)].= v; Q [Bf;,(I r —r,. I)/& r] X;;(r, r, I(n j)n, (r, )d

This equation must be valid for arbitrary v;. Hence follow the relations

v inn&(r) +p &4';(r) = f lsf;, (I r - r;I)/sr]g;, (r, r, l(n&]')n, (r,)«;

(4)
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! ternal potentials O;(r) are allowed for.
Karkheck and Stell' have shown that for SET a

monotonically increasing entropy functional can
be defined, just as can be done for RET." How-
ever, as they pointed out, for mixtures the ther-
modynamic driving forces resulting from this
entropy functional do not coincide with the phe-
nomenological ones, and again, the argument
given above shows that in the presence of exter-
nal potentials the state of maximal entropy for
this equation does not coincide with the correct
nonunif orm equilibrium state.

To avoid misunderstandings I want to stress
the mell-known fact that for one-component sys-
tems RET and SET yield identical hydrodynamic
equations through the Navier-Stokes level of de-
scription, whether or not an external potential
is present. Beyond the Navier-Stokes level there
are differences and for hard-sphere mixtures
differences show up already at the Navier-Stokes
level. Finally, I want to remind the reader that
RET, just as SET, is not an exact kinetic theory,
since velocity correlations due to memory effects
(recollisions) are not included.

The author acknowledges partial support for
the work discussed here by a NATO grant for
International Collaboration in Research.

vp I: c,(rq+~, (rl(n, j)]=o,

whence follow the well-known equilibrium condi-
tions

4'((r) +p, ;(rgn, f)=y; =const.

Just as (6), these equations determine the equi-
librium density fields as functionals of the exter-
nal potentials f@;]. Again, a different choice for
the dependence of y;, on the density fields would
lead to a set of equilibrium conditions similar to
(9), but the functional dependence of the intrinsic
chemical potentials on the densities would differ
from that prescribed by equilibrium statistical
mechanics.

Hence we may conclude that among all variants
of the Enskog theory obtained by choosing differ-
ent options for the functional form of the X;, , only
revised Enskog theory is consistent with standard
equilibrium statistical mechanics if arbitrary ex-

These are nothing but the Born-Green equations' for the hard-sphere mixture under consideration, pro-
vided the pair correlation functions y;, in the presence of the external potentials (@';] depend functional-
ly on (n;j in the way prescribed by equilibrium statistical mechanics. ' This follows as well from the
fact that in equilibrium the revised Enskog equation (l) becomes identical to the first Bogoliubov-Born-
Green-Kirkwood- Yvon-hierarchy equation for a hard-sphere mixture, ' again provided the functionals
X&~ are of the form prescribed by equilibrium statistical mechanics. As is well known (6) defines a set
of integral equations for the density fields {n~). It is obvious that the solutions of these equations de-
pend on the functional form of the pair correlation functions X;,. Only if the latter is chosen as de-
scribed above will the resulting density fields be of the form required by equilibrium statistical me-
chanics. Equation (6) may be interpreted in still another way by using the identity

&p p, ;(rl&n, ]) =vlnn, (r) gf-r&f;;(I r —r;I)/&r]y&, .(r, r;I(n;].)n, (r;)d r, (7)

Here p;(rl(n;j) is the so-called intrinsic chemi-
cal potential of species 1, which can be defined
as a functional of (n~} through a Mayer expan-
sion. The explicit form of this expansion is giv-
en, e.g. , in equation (4.5) of Ref. 7. Applying a
gradient with respect to r to the latter equation
immediately yields (7). Insertion of (7) into (6)
leads to the result
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