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Alternative Treatment of Diffusion-Controlled Bulk Recombination
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It is shown that the Laplace transform of the diffusion-controlled bimolecular rate
kernel can be directly obtained as the solution of a Riccati equation with the annihilation
distance as the independent variable. This provides an efficient alternative to solving
the Smoluchowski equation. The solution is expanded in powers of the square root of the
Laplace variable; for the first time, the question of convergence is discussed and set-
tled, and terms other than the first two are given explicitly and recursively by quad-
rature s.
PACS numbers: 02.50.+s, 05.20.Dd, 05.60.

A fundamental problem in the theory of diffu-
sion-controlled processes is the eal.culation of
the time-dependent bimolecular rate kernel or
rate constant (also called the bulk or the homo-
geneous rate of recombination). This is the cen-
tral quantity for a large amount of bulk recom-
bination phenomena, e.g. , recombination of elec-
trolytes or radicals in solutions, quenching of
fluorescence, and annihilation of exeitons or elec-
tron-hole pairs in amorphous and solid materials.
In the traditional approach' the Smoluchowski
equation must be solved with an initial Boltzmann
distribution and an absorption boundary condition
at the annihilation (reaction) distance A. That
solution is the time-dependent density profile
from which the rate of recombination is calcu-
lated as the flux through the annihilation surface
with radius A; this requires knowledge of the
first derivative of the solution at A only. Conse-
quently that approach or the equivalent one'
based on a calculation of the geminate rate via
the backward (adjoint) equation' contains one
superfluous variable and the relevant variable A

appears indirectly as the position of the boundary
condition. Only for free diffusion has a closed-
form solution been given and, perhaps because of
the indirect route of calculation in the traditional
approach, only few and restrictive approximate
solutions have been obtained for more realistic
situations. Several authors have constructed
perturbation expansions for the Laplace trans-
form of the rate kerne14 or of a closely related
quantity, ' ' but until now only the first two
terms have been given and the range of applieabil-
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ity was uncertain. For example, for the impor-
tant case of a Coulomb interaction an unpredicted
divergence appears. ' In view of the large amount
of applications it seemed desirable to present a
simpler approach to the calculation of the rate
kernel, to find a systematic way of generating a
perturbation expansion, and to investigate its con-
vergence.

In this Letter we present an alternative treat-
ment by showing that the measurable quantity the
Laplace transform of the diffusion-controlled
rate of bulk recombination ~(s, A) is determined
directly by an initial-value problem defined by a
Hiccati equation with A as the independent vari-
able. For small s the solution of this equation is
given as an expansion in powers of s' ', where
we show that each term can be expressed in
terms of the previous ones by a simple quadra-
ture, and thus in principle all the terms can
easily be calculated successively. Furthermore,
we establish that the series is convergent for cut-
off and exponentially damped potentials, and that
it is asymptotic for inverse-power potentials.

As emphasized previously no restriction is in-
troduced by considering only the diffusion-con-
trolled limit since this also covers the general
case of a partially diffusion-controlled process.
In the present work we only consider three-di-
mensional isotropic systems with continuous dif-
fusion,

Let R(s, r, A) be the Laplace transform of the
(geminate) rate of recombination at A of a pair
of particles with an initial separation r. The
Laplace transform of the bulk recombination
rate is then equal to"

(1a)

(1b)

where P =1/kT, U(p) is the potential energy between a pair of recombining particles which vanishes as
r- ~, and D(r) is the relative diffusion coefficient which may depend on r. The equivalence of the two
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(2)

expressions follows from Green's theorem. '
Since A(t, r, A) can also be interpreted as the density of first arrival times at A starting from r, the

renewal equation
t

It(t, r, A) = J B(t—T, r, y)A(w, y, A) d T

is valid for r ~y ~A. The Laplace transform of Eq. (2) is

A(s, r, A) = A(s, r, y)ps, y, Q).

It readily follows from Eqs. (1a) and (3) that the bimolecular rate kernel, defined as'

k(s, r) =- s R(s, r),

obeys

k(s, A) =k(s, y)R(s, y, A)+ s J e ~~'"'tl(s, r, A)4nr'dr.

(3)

(4)

(5)

Differentiation of this equation with respect to y at y =A and use of Eq. (1b) leads to the Riccati equa-
tion

dk(s, y), 6U &, &
k(s, y)'

dy 4'(y)y'e v &

In deriving Eq. (6) B(s, y, y) =1 was used, which is true only for a diffusion-controlled process. Since
U(r)-0 and D(r)-D„for r- ~, k(s, y) must approach the free-diffusion expression for r- ~. Thus
we obtain the following boundary condition:

k(s, y) -4' „y[1+y(s/D „)'~']for y- m (7)

It can be shown" that 8 and hence k are analytic functions of q= v's, in the half-plane Be(q) & —y for
exponentially screened potentials U(r) =e xp(-Zr) /r", and in the whole complex plane for cut-off po-
tentials. For these potentials the solution can therefore be written as a power-series expansion of
the form

k(s, y) = Q q"k„(y) (q = Es}.

For other potentials the series does not converge but it still constitutes an asymptotic expansion in q,
i.e., only a small number of terms should be kept.

By inserting the expansion (8} into Eq. (6) one readily finds that the k„ssatisfy the following closed
system of first-order differential equations:

&+SU(y) n

dp

k,(y) =
oo QQ (~)d

4~D(x)~'

Equation (9) is linear for n & 0 and can be linear-
ized for n =0 by using 1/k, as the dependent vari-
able. Hence it can be solved successively for all
n The bo.undary condition (7) implies that k,
-4mB y 4 -4mB„'~'y' and k -0 for y-~ and
n &2.

The first two terms are simply given in terms
of quadratures as

tion profiles. " The expression (11}for the low-
est-order contribution to the time dependence is
identical to that obtained by asymptotic perturba-
tion theory' and agrees with the less general form-
ulas obtained by matched perturbation expan-
sions

For the purpose of calculating the higher terms,
which have not previously been given, it is con-
venient to introduce a new set of unknown func-
tions f„,defined as

k, (y) = k,(y)'/4zD „'~'. f„=k„/k~'. (12)

The expression (10) for the steady-state rate con-
stant k,(y) is of course identical to that obtained
by calculating steady-state fluxes and concentra-

This eliminates the k,k„terms on the right-hand
side of Eq. (9), yielding an explicit expression
for any f

„

in terms of the previous ones by the
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following quadrature:

f.(y) =- n -1 5„2
k, '(x) Q f,. (x)f„,(x) —,,"' '„dx, n ) 2; (13)

the prime indicates differentiation with respect to x. The second and third terms may be written as

k, (y) = —k.(X)'

k,(y)'

k, '(x)
(4 ~)'D„' D(x)k, '(x)

k, '(x) 1

(4 I'& ' &(*)& '(~))

(14)

It is easily verified that k, and all higher terms
vanish identically for free diffusion as required.
For a Coulomb potential the integral in Eq. (14)
diverges logarithmically. Thus, as expected, no

convergent series in powers of s' ' can be found

in this case. However, the first two terms still
constitute a useful, asymptotic approximation,
cf. Table I. For a power potential r " the first
divergent term is k„„.

The accuracy of the expansion was investigated
for a Debye-Huckel interaction

U(r) = exp[- «(r —A)]/Ik Te(1+ zA)r]

for different values of the screening constant ~

and the dielectric constant e. "Exact" values
of the rate kernel k(s, A).were obtained numerical-
ly with an accuracy of five digits. The coefficients
kp ky k2 and k, were cal culated by numerical
integration of the relevant integrals up to a dis-
tance r~» while the tail contribution was evalu-
ated by analytical integration of the asymptotic
expansions of the integrants. Note that 4, and k,
can be calculated simultaneously and thus there
is no point in going to second order only. The
relative errors of the first-order and third-order
expansions of k(s, A) are displayed in Table I for

! various values of x and the dimensionless Laplace
variable 0= sA'/D. The important case of a pure
Coulomb field (x= 0) is also included but only as
a first-order expansion since the higher-order
coefficients diverge Fo.r cr' (zA, i.e., within
the region of convergence, the accuracy of the
expansion is increased by a factor of 5 to 1000 by
going from first to third order, e.g. , for &=10 ',
a=10 ' the first-order error of 80$ is reduced
to 1$ by including the second- and third-order
terms. The accuracy of the expansion and the
improvement due to the higher-order corrections,
which both depend on the strength of the potential,
decrease near the convergence limit, but the
third-order results continue to be more accurate
than the first-order results up to cr ~ xA(10)'i'
from which point on the expansion ceases to be
useful.

The long-time behavior of k(t) follows immedi-
ately from the expansion (8) which can be inverted
term by term. " If, however, many terms are
required or the expansion diverges it may be
necessary to solve Eq. (6) directly by a numerical
technique. This can be done very quickly and
efficiently since Eqs. (6) and (7) represent a sim-

TABLE I. Relative errors of the expansion Eq. (8) for a screened
Coulomb potential. Upper and lower entries refer to first- and third-
order expansions, respectively. Empty entries indicate numbers smaller
than 5x 10, the accuracy of the present numerical calculation.
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pie one-point initial-value problem, but of course
the solution must then be Laplace inverted nu-
merically, which significantly decreases the ac-
curacy. An accurate numerical solution of k(t)
is not trivially obtained.

Depending on the experimental conditions either
k(s) or k(t) is needed for the interpretation of ex-
perimental data. In a steady-state fluorescence-
quenching experiment the fluorescence intensity
is measured as a function of the concentration of
an impurity that quenches the fluorescence, e.g. ,
by acting as an irreversible trap for the mobile
excitation. When the decay of the fluorescent
state is mainly radiative, the fluorescence inten-
sity depends linearly upon [Q]k(1/T, ) where [Q]
is the concentration of the quencher and z, is the
natural lifetime of the fluorescent state. The
same quantity k(1/7, ) is also needed for a calcu-
lation of the "sensitized" fluorescence yield of
the impurity, which for example is a central
quantity for rare-earth laser and energy up-con-
version materials. In most time-resolved experi-
ments one or more types of (quasi) particles are
created by a delta pulse at time zero. The rate
of disappearance of the particles due to bulk
recombination at a later time is given by the well-
known kinetic equation

dn, /d t = —s( t)n, (t)n, (t). (16)

If the particles are charged and, for example,
only particles of type 1 are mobile, then the meas-
ured transient conductivity is directly proportion-
al to n, (t). An example of this is provided by the
transient photoconductivity of amorphous semi-
conductors. If in addition to the recombination.
process there is a dominant monomolecular de-
cay, then for "long times" the rate of bulk recom-
bination is again given by Eq. (16) but now with
u(t) replaced by k(s), where s is equal to the
monomolecular decay rate. " An example of this
is found in molecular crystals where the triplet-
triplet exciton annihilation gives rise to "delayed"
fluorescence with a time-dependent intensity pro-
portional to dn, /dt.

Compared with the traditional method the pres-
ent approach has several advantages: (1) It is
simpler and more direct, e.g. , explicit expres-
sions for the expansion coefficients in terms of
quadratures follow trivially from Eq. (13) and

thus for the first time terms higher than first
order have been given. Inclusion of the second-
and third-order terms significantly improves the
accuracy of the expansion. For strong potentials
the obtained improvement of the accuracy by a
factor of 100 or more is in fact necessary for the
expansion to be useful. (2) The question of the
convergence of the series is discussed and settled
here for the first time. (3) It reformulates the
problem in a way that is convenient for numerical
purposes. Finally, we note that the treatment
can easily be extended to include geminate recom-
bination. Consequently, all quantities of interest
for diffusion-controlled recombination processes
can be found by solving the Riccati equation (6)
rather than the Smoluchowski equation.
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