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Low-Dimensional Chaos in a Hydrodynamic System
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Evidence is presented for low-dimensional strange attractors in Couette- Taylor flow
data. Computations of the largest Lyapunov exponent and metric entropy show that the
system displays sensitive dependence on initial conditions. Although the phase space is
very high dimensional, analysis of experimental data shows that motion is restricted to
an attractor of dimension 5 for Reynolds numbers up to 30% above the onset of chaos.
The Lyapunov exponent, entropy, and dimension all generally increase with Reynolds
number.
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Lorenz' and Ruelle and Takens' have suggested
that the onset of fluid turbulence can be described
by strange (chaotic) attractors, that is, nonper-
iodic motion generated by finite-dimensional de-
terministic dynamics. This contrasts with Lan-
dau's suggestion that turbulence is multiperiodic
motion with many incommensurate frequencies.
An experiment by Gol.lub and Swinney' showed
that the Landau hypothesis fails, but until. now the
strange-attractor hypothesis has eluded verifica-
tion. Using improved techniques for experimental
data acquisition and analysis, we present evidence
in this paper that the transition to turbulence in
Couette- Taylor flow is initiated by low-dimension-
a1. strange attractors.

A deterministic system is chaotic if nearby
points in phase space separate at an exponential
rate (on the average). This sensitive dependence
on initia1. conditions is reflected by a positive
l.argest Lyapunov exponent X, and positive metric
entropy' h„. The dimension' d& of an attractor,
if small and nonintegral. , confirms that the dynam-
ics admits a l.ow-dimensional deterministic math-
ematical description characterized by a, strange
attractor. We now describe the experiment and
cal.culations of X» h» and d&.

Measurements were made on a concentric cy1.-
inder system with ra.dius ratio 0.875, outer radius
5.946 cm, a f1.uid height-to-gap ratio 20, and rig-
id stationary end boundaries. ' The modulated
wavy-vortex flow state studied had sixteen Taylor
vortices and four azimutha. l waves in each travel-

ing wave train. ' Measurements were made for
Reynolds numbers R in the range 10', to 15R, ,
where B is proportional to the angular velocity of
the inner cylinder and R, is the critical Reynolds
number for the onset of Tay1or vortex flow. The
radial, component of the velocity, V(t„) [where t„
=k b.t, k = 1, ... , 32 768; typically tg.t = 6 ms],
was determined by Doppler velocimetry. Using a
pul. se correlator, we obtained velocity values far
more accurate than those obtainable by the usual.
ana1.og velocimetry methods.

Phase portraits of dimension m can be con-
structed from the vectors (V(t„), V(t~+r), .. . ,
V(t, + (ggg —l)w)), where ~ is essential. ly arbitrary. '
Figure 1(a) shows phase portraits at R/R, = 10.1,
where the velocity power spectrum contains only
sharp peaks at two fundamental frequencies and
their combinations, and at R/R, = 12.0 and 15.2,
where the spectrum contains broadband noise in
addition to the sharp spectral components. Fig-
ure l(b) shows two-dimensional Poincare sec-
tions given by the intersection of orbits in three-
dimensional portraits with planes. The closed
loop corresponding to the surface of a torus is
well defined at R/R, = 10.1; the small. amount of
scatter presumably arises from instrumenta, l.

noise. The surface of a torus is stil. l clear, al-
though fuzzier at R/R, = 12.0. However, at R/R
=1.52 a torus is no longer apparent —phase por-
traits and Poincare sections no longer yield use-
ful information. Therefore, we turn to more
quantitative methods of data ana, lysis, i.e. , com-
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FIG. 1. (a) Two-dimensional phase portraits, V(~q+ ~) vs V(t~), where T =130 ms. (b) poincare sections given
by the intersection of orbits in a three-dimensional phase portrait [with the axis normal to the paper given by
V(t&+ 27) j with a plane normal to the paper passing through the dashed line in (a).

putation of X» h» a,nd d„.
In chaotic motion nearby orbits diverge at an

exponential rate given asymptotically by a posi-
tive largest Lyapunov exponent X„ in contrast,
for multiperiodic motion, X, = 0. We have devel-
oped an algorithm for estimating the nonnegative
exponents of an attractor from measurements of
a single observable. ' To find X, we first construct
a phase portrait of sufficientl. y high dimension.
%e then continuously monitor the long-term evo-
lution of the separation between a pair of initial. l.y
adjacent data points. When this separation is no
longer small. , the second point of the pair is re-
placed by a "nearest neighbor" of the first, sub-
ject to the condition that the orientation of the
separation vector is most nearly preserved. The
average rate of growth of the logarithm of this
separation is then our estimate of X,. Using files
of -300 orbits (-100 points/orbit) in five-dimen-
sional reconstructions of the attractors, we found
that A. , was close to zero before the transition,
and generally increased with R after the transi-
tion, a,s shown in Fig. 2. Although our method
works well on a variety of model systems with
known Lyapunov exponents, ' we find that for lab-
oratory data a variety of problems cause a de-
pendence of X, on the embedding dimension m.
Our interest here, however, is in the behavior of

with R rather than its precise magnitude, and
this is independent of rn.

The metric entropy k& is the average informa-
tion gained with each measurement on a dynam-
ical. system. For chaotic motion, 0&k„&; for
multiperiodic motion, h& = 0. The metric entropy
is believed to be equal to the sum of the positive
Lyapunov exponents. To compute h& the phase
space is pa.rtitioned into cells that represent
possible outcomes of measurements made with
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Flo. 2. The 1argest Lyapunov exponent A, ) (dots) ob-
tained from five-dimensional phase portraits and the
metric entropy h& (triangles) as a function of R. The
units are bits per orbit (i.e. , bits per intersection
with a Poincare section). For calculations of A. , and

h„ the data were low-pass filtered with a cutoff at ap-
proximately 3 times the higher fundamental frequency.
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finite precision. ' As a trajectory traverses the
phase space, it moves through different cel.ls,
generating a sequence of measurement outcomes.
The probability of occurrence of each sequence of
finite length can then be approximated by the rela-
tive number of times that it occurs, i.e., p(S„)
=N(S„)/N„where N(S„) is the number of times a
particular sequence S„occurs and N, is the total
number of occurrences of all possibl. e sequences
of length n. The average information contained in
sequences of l.ength n is I„=-Q~ p (S„)l.og,p (S„)
and the metric entropy is the amount of new in-
formation, h„= lim„„lim„, „(f„+,-I„). We com-
pute h& only at small R where two-dimensional
Poincare maps can be used to obtain accurate
values of the entropy. For each value of h& in
Fig, 2 we estimate an error oi'+ 0.05 bit/orbit.
In addition our technique is known to underesti-
mate h„.

The dimension-of an attractor provides a way
of quantifying the number of relevant degrees of
freedom present in dynamical motion. We use
three methods" "for computing the dimension
of the attractors obtained from our data. The
basic idea behind these methods is that the num-
ber of points X of a d„-dimensional. attractor in-
side an m-dimensional ball of radius e (d „~m)
seal. es as c "p. Our first method of estimating
dimension is to compute the average of lnN for
many balls of radius c, and then the slope of I.nN
vs inc is determined for increasing m. The sec-
ond method is similar, except thatN is made the
independent variable: The distance ~ from a giv-
en point to its Nth nearest neighbor is computed,
and then c is averaged over many points, for in-
creasing m. These two methods in principl. e pro-
duce the same number. ' Our third method, due
to Grassberger and Procaccia, is to compute a
l.ower bound on d„as described in Ref. 11.

Determination of d„by method 2 is illustrated
in Fig. 3(a). Plots of lnNvs inc are approximate-
ly straight lines. As rn increases the sl.ope in-
creases but approaches an asymptotic value for
large m, as illustrated in the inset in Fig. 3(a);
confirming that the nonperiodic motion of the
fluid takes place on a finite- (in fact low-) dimen-
sional strange attractor. Figure 3(b) shows the
growth of d& with R.

Finally, we need to consider whether our calcu-
lations of X„h„, and d„can trul. y distinguish be-
tween deterministic chaos and the effects of ex-
trinsic noise. Results for the Couette system
were compared to those obtained for a multiper-
iodic time series with increasing amounts of add-
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FIG. 3. (a) Curves used to deduce the dimension d&

by method 2 from data (spanning about 300 orbits) at
R/B, = 13.7 for different m. The asymptotic slope for
large m (see inset) is an estimate of d&. There are
systematic errors for large and small e; therefore,
as shown in the figure, only the middle portion of the
curve is used for the fit. We estimate our error bars
to be + 0.3 at R/R, = 10.1 and + 0.8 at R/R, = 15.2.
(b) The R dependence of d& computed with use of me-
thods I (dots), 2 (squares), and 3 (triangles), as de-
scribed in the text.

ed noise. X, and h„ increased with noise level,
as expected. However, in contrast to results for
the experimental. data, these values showed a
strong sensitivity to the cutoff frequency of a
low-pass filter applied to the test signal. . Cal.cu-
lations of d„ for multiperiodic data with added
noise showed no tendency to converge with in-
creased embedding dimension, again in sharp
contrast to calculations on the experimental data.
We therefore conclude that although there is un-
doubtedly extrinsic noise in the Couette system,
the motion is dominated by deterministic chaos.

In summary, we would like to emphasize not
the precise values of the X„h„, and d„, but that
above the onset of chaos (marked by the appear-
ance of broadband spectral noise) X, and h„be-
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come positive and d& remains small. The growth
of X, and h& withe indicates an increase in the
unpredictability of the flow and the growth of d„
with R indicates an increase in the number of ac-
tive degrees of freedom in the fluid. Although the
fluid could potentially have a very large number
of degrees of freedom, our studies indicate that
there are only a few xetevant degrees of freedom,
certainly l.ess than 5, even at a Reynolds number

3(Pp above the onset of chaos.
While this paper was in preparation we learned

of related studies of dimension by B.Mal. raison,
P. Atten, P. Berge, and M. Dubois, and by
J. Quckenheimer and G. Buzyna. " The assist-
ance of Mark Haye in efficiently yrogramming the

calculations of X, is gratefully acknowledged. Our
experiments were conducted at the University of

Texas with the support of National Science Found-
ation Grant No. MEA82-06889.
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