
VOLUME 51, NUMBER 16 PHYSICAL REVIEW LETTERS 17 OCTOBER 1983

Bubble Motion in the Nonlinear Rayleigh-Taylor Instability
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An approximate description of Rayleigh- Taylor bubble motion is given in terms of a
Fourier series expansion of the velocity potential. Consistent predictions for the steady-
state velocity, the bubble curvature, and the first three Fourier coefficients are obtained.
A simple model of nonsteady bubble motion is developed. It is found that an exponential
amplitude dependence is responsible for a rapid transition to the steady-state regime
when the amplitude becomes larger than —A/67(.

PACS numbers: 47.20.+ m, 52.35.Mw

Rayleigh- Taylor-type hydrodynamic instabil-
ities are under current investigation in inertial
confinement fusion physics. ' ' The growth of
these instabilities may limit the fusion gain for
thin shell pellets by destroying the spherical im-
plosion symmetry. In a number of hydrodynamic
simulation studies ' it has been observed that
nonlinearities play a major role in reducing the
classical instability growth rates. After an ini-
tial phase of exponential growth the instability
evolves in the nonlinear regime into an approxi-
mate steady state of rising bubbles. This final
steady state is well known from early experi-
ments' ' and the steady-state velocity was given
with high accuracy by the theories of Birkhoff
and Carter" and Garabedian. "

It is the purpose in this paper to give an approx-
imate description of Rayleigh- Taylor (RT) bubble
motion in plane potential flow. The method used
here is based on a Fourier series expansion of
the velocity potential in a coordinate frame co-
moving with the bubbles. In this frame the Fou-
rier coefficients saturate at their steady-state
values. It will be assumed that these are rapidly
decreasing with the mode number so that accu-
rate approximations can be obtained by determin-

. ing the first few harmonics only. The technique
is applied to the steady-state regime and consis-
tent predictions for the first three Fourier coeffi-
cients, the bubble velocity, and the bubble curva-
ture are derived. One can also easily extend the
model to account for the nonsteady phase of bub-
ble formation. Here nonlinearities are found to
become important in the very early stages of the
instability which can explain the striking depar-
tures from linear theory observed in numerical
calculations. ' ' After this work was completed
I noticed that a similar concept has been used be-
fore by Layzer. " In the present treatment a
more rigorous justification of the procedure is

given by the third-order steady-state theory and
the nonsteady growth is derived for slightly more
general initial conditions.

Consider a half-infinite fluid layer supported
by gas pressure under gravity and assume plane
potential flow periodic in the x direction with
wave number k and uniform gravitational accel-
eration g along the (-z) direction. For conveni-
ence dimensionless variables are used with all
lengths and times measured in units of h ' and
(gh) "', respectively, and an accelerated coor-
dinate frame is chosen with the origin attached
to the bubble vertex. Then the basic equations
governing the flow assume the form

W(x, z, t) =P y (t)I.cos( x) —I+mz], (la)
I= 1

w +-,'(u'+v') + (I+a)P =0,

8 /+NB„P —U =0,

with

(1c)

sx O'I s= g ~
v= apl

where the dot denotes the time derivative and a(t)
the bubble amplitude relative to the undisturbed
surface. In Eq. (la) the velocity potential y(x, z,
t) is expressed as a Fourier series in x which
satisfies the Laplace equation and the boundary
conditions y = 8, y = 0 at the origin x =z = 0. The
expansion coefficients y (t) are subject to the non-
linear free-surface boundary condition (lb). It
follows immediately from Bernoulli's equation if
the surface pressure is taken constant and if the
bubble acceleration a (t) is added to the usual
gravitational acceleration. The equation of the
free surface z =&(x, t) is determined from the re-
quirement that surface particles move with the
fluid as expressed by Eq. (1c). In terms of the
Fourier expansion (la) the bubble velocity is giv-
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FIG. 1. (a) First (y2) and second (cp3, dashed lines) harmonic as determined by Eqs. (5b) and (5c). In the pre-
sent model the amplitudes of higher harmonics are varied within a given range to account for their occurrence in

the spike solution:
~ rp&/(0&~ & 2x 10 3, y, /y& = —0.0002 (curve 1), 0 (curve 2), + 0.0002 (curve 2). (b) Froude num-

ber as a function of cp2. Note that for given y& one finds only minor variations with y& (curves 1-3). (c) Hadius of
curvature B vs Froude number I'. Comparison is made with the data of beefs. 4 and 6 at E = 0.24 and F = 0.225,
respectively.

en by

a (t ) = - 0, (p ~, , „=- Q m y„(t).
m=~

To satisfy Eq. (1) in a neighborhood of the vertex x=0, we expand the potential (1a), the surface dis-
placement f(x, t), and the velocity components u, v in power series of the form

ao ao
( 1)j+$

( xz, t) = P Q .„.;b2'„.(t)x"g' -bc(t) +b, (t)z
k=0 j=o ~ j '1 '

g(x, t) =Q . , c,.(t)x", u(x, t) =-b, x+nx'+px'+O(x'), v(x, t) = y'x +()'x+q 'x+ O(x),
i= 1

with the expansion coefficients given by

b, (t) =P m'(p,
m= &

n =
t (b4 —3b—,c,), y =2(b, —b,c,), P =

t (b, —10b,c, +15b4c, —5b,c,),

5 =
4 t (b, —6b4c, + 3b,c,' —b,c,), q =

6 t (b, —15b,c, +45b,c,' —15b,c, —15b~c,'+ 15b,c,c, —b,c,).

%e first restrict attention to steady-state conditions where one has 8, ( =m =a' =0. Inserting here the
series (3) into Eqs. (1b), (lc), and equating the coefficients of equal powers of x one finds up to the or-
der O(x') the relations

b,c, -y =0, b,' —c,=0, O(x')

4t
,cb+ 3(cn, +35|=0, 4'nb, ——y -c,=O, O(x )

6t
c,b, +20nc, —5'pc, —5'g=O, —n -6(pb, +6tyb —c, =O, O(x').

(4a)

(4b)

(4c)

Eliminating now the coefficients c„c„c,from Eq. (4) yields after some algebra the system

b, —3b, =0,

95b,' —90b,b,b, + 9b,'b, = 0,

105b,' —840b4b, 'b, + 882b,b,'b, ' —63b,b4b, ' —189b,b,b, '+ 9b,b2 = 0.

(5b)

(5c)
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FIG. 3. Bubble velocity for the same parameters as
Fig. 2. In the nonlinear regime the curves approach
the asymptotic value 1A&.
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FIG. 2. Time evolution of the bubble amplitude for
the initial conditions ao= O.l 0 Ol 0 001 Qp= 0 ~ The
dashed lines correspond to classical growth a(t)
= Q () cosht .

from -0.225 to -0.25 in close agreement with
previous results. ""One should also notice that
large Froude numbers occur for negative values
of y, ' when the phases of the first harmonic and
the fundamental mode are opposed. At much larg-
er harmonic amplitudes a similar dependence
has been observed recently. ' It is also of inter-
est to discuss the radius of curvature at the bub-
ble vertex,

R 1 3
2 c

Now proceed by solving Eqs. (5a)-(5c) for the
first three Fourier coefficients with the others
assuming given values. Introducing the ratios
y, ' =y,./y„b, '=b, /y„. Eq.. (5a) is easily solved
for cp, yielding

p, ' = b, '/3b2', (6)

and Eqs. (5b) and (5c) depend on primed quanti-
ties only. The latter have been solved numerical-
ly for y, ' and cp,

' in the parameter range
I q, 'I

& 0. 1~ I y~'I & 2x 10 ',
I y, 'I & 2x 10 ', y = 0 for i

& 5. The result proves consistent with the as-
sumption of rapidly decreasing harmonics [Fig.
l(a)]. The first harmonic is found to be smaller
than -0.15I y J and the second smaller than -0.03
x

I y J. It is also noted that y, can assume both
positive and negative values while y, always stays
positive. It may therefore be possible to find so-
lutions where q, is the first nonvanishing har-
monic contribution. For any solution for y, ', cp, ',
Eqs. (2) and (6) determine the corresponding bub-
ble velocity. It is usual to express a by the re-
lated Froude number E =&i/(2z)'" which is shown
in Fig. 1(b) as a function of y, '. In the present
calculation the Froude number shows variations

in the present model. It can be shown that it in-
creases with the possible Froude numbers and
varies between - 0.3 and -0.5 [Fig. 1(c)]. For
comparison data given in Refs. 4 and 6 have been
indicated in Fig. 1(c).

Based on the analysis of the steady state one
can also consider a simple model of nonsteady
bubble motion. As a first estimate we neglect
all harmonic contributions and use Eqs. (1b) and

10.

A

(ym]

4, 5. 10 X [p, rn] = 50 '100. 200

FIG. 4. Final amplitude as a function of the wave-
length. In the nonlinear case a wavelength of maximum
growth is obtained.
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(1c) up to the order x' for determining the fundamental mode y, . Truncating the series under Eqs. (2)
and (3) after m = 1 one has 5; = —i and Eqs. (1b) and (1c) can be written consistent up to the order x' as

02
&'+ — ' =0, c, -a(1-3c ) =0. (8)

Equation (8) represents a nonlinear equation of motion for the bubble amplitude a(t). It has a first in-
tegral of the form

3 (1 —exp[- 3(a —a,)I) —e "(2(a -a,) -a, '[1 +2 exp(3a, )j)
SQ

with the initial conditions a(0) =a, «1, a(0) = c,(0)
=z, «1. The bubble velocity as given by Eq. (8)
shows a strong exponential amplitude dependence.
For small amplitudes (3a«1) it reduces to the
well-known result of linear theory,

a =a —(ao' —ao ), a =ao cosht+ao sinht. (10)

In the opposite limit of large amplitudes one ob-
tains a constant steady-state velocity with the
Froude number 1/(67t )"'—= 0.230. The transition
from the linear to the steady-state regime occurs
for 3a - 1 when the bubble amplitude becomes -X/
(6z). This value is considerably lower than pre-
vious estimates (0.4x).' For an evaluation of Eq.
(9) we refer to Figs. 2 and 3 where a(t) and a(t)
are shown for the initial conditions ap=0 1 0 01,
0.001, ap=0.

We finally discuss the wavelength dependence
of the final bubble amplitude A as given by

A(x) = g/2n)a(p/v" x),

where p = (4mgt'/2)"' now is considered as a fixed
parameter and where all quantities here have
their usual dimensions. In Fig. 4, A(X) is shown
for p = 50 (pm)"'. Since shorter wavelengths are
favored by the linear regime but larger ones by
the final steady state maximum growth occurs
for intermediate wavelengths which are here of
the order of 10-50 p. m. In the present example
an accelerated foil could be pushed the distance

gt'/2=—200 pm which is about twenty times the
maximum bubble amplitude.
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