Comment on "Photoexcitations in trans- $(CH)_x$: A Fourier-Transform Infrared Study"

In a recent Letter Blanchet et al. have presented photoinduced absorption spectra of trans-polyacetylene which demonstrate that photogenerated charged solitons apparently are pinned. The pinning frequency is 500 cm⁻¹ (0.06 eV). I remark that this observation has a natural interpretation in terms of solitonic exciton formation. If a potential well V(R) with a minimum at a separation distance $R = R_0$ exists between the oppositely charged members (S^+ and S^-) of a photogenerated pair, the solitons will bind and oscillate with a frequency ω_0 about the equilibrium separation R_0 . The following simple calculation correctly predicts the magnitude of ω_0 and leads to a rate for a photodecay process, $S^+S^- \rightarrow S^0S^0 + h\nu$, which is consistent with the observed recombination time of the photogenerated species.

Lin-Liu and Maki² have calculated the interaction energy between two solitons for $R > 2\xi_0$, where $2\xi_0 = (4t_0/\Delta)a$ is the soliton width and where t_0 denotes the π -electron hopping integral, 2Δ the Peierls gap, and 2a the linear lattice constant. For the S^+S^- configuration their calculation may be trivially modified to allow for the correct (odd) parity³ of the two-electron wave function describing the occupation of the split gap states. Consequently, the S^+S^- configuration is repulsive, and allowing for the Coulomb attraction, one has

$$V(R) = -(e^{2}/\epsilon R) + (8\Delta/\pi) \exp(-2R/\xi_0).$$
 (1)

Here ϵ is the static dielectric constant of the polymer. It follows immediately that R_0 is the solution of $\pi e^2/8\epsilon\xi\Delta = (R/\xi)^2\exp(-R/\xi)$, where $\xi \equiv \xi_0/2$, while

$$(\hbar\omega_0)^2 = (2e^2\hbar^2/\epsilon R_0^2 \eta M_s)(1 - 2\xi/R_0)$$
 (2)

in which M_s is the soliton translational mass. With use of the representative values $2\Delta=1.4$ eV, $t_0=3$ eV, $M_s=m_e$, $\epsilon=10$, and a=1.2 Å, we find $R_0=5.1\xi=26$ Å (i.e., $R_0/2\xi_0=1.28$) and $\hbar\omega_0=0.062$ eV. Allowing for zero-point motion, the dissociation energy of the bound pair is $k_{\rm B}T_d\simeq V(R_0)+\hbar\omega_0/2$, giving $T_a\simeq 151$ K, consistent with the observed temperature for the onset of photoconductivity. 4

The rate, $1/\tau$, for the spontaneous photodecay process $S^+S^- + S^0S^0 + h\nu$, where $h\nu = 4\Delta \exp(-R_0/\xi_0)$ is equal to the splitting of the gap states, is, for T=0,

$$\hbar/\tau \simeq (2e^2/3\epsilon R_0)(4\Delta\epsilon^{1/2}R_0/c\hbar)^3 \times \exp(-3R_0/\xi_0)$$
 (3)

which yields $\tau \simeq 3 \times 10^{-6}$ sec.

The effects of electron correlation and the possibility of the formation of a three-dimensional ionic lattice of solitons with the (highly repulsive) S^+S^- configuration of even parity is presently under investigation.

I thank Graciela Blanchet and Curt Fincher for directly stimulating this Comment.

M. J. Rice

Xerox Webster Research Center Webster, New York 14580

Received 6 June 1983

PACS numbers: 72.80.Le, 72.15.Nj, 78.30.Cp

¹Graciela B. Blanchet, C. R. Fincher, T. C. Chung, and A. J. Heeger, Phys. Rev. Lett. <u>50</u>, 1938 (1983).

²Y. R. Lin-Liu and K. Maki, Phys. Rev. <u>22</u>, 5754 (1980).

³R. Ball, W. P. Su, and J. R. Schrieffer, to be published.

⁴G. B. Blanchet and C. R. Fincher, private communication.