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Normalizable Resonance Wave Function, Analyticity, and Decay Law
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The authors show how to construct a normalizable resonance wave function produced
by a sharp-cutoff two-body potential using analyticity and basic quantum mechanical
requirements. To this end they propose a saturation scheme, and estimate the duration
of validity of the exponential decay law. The viability of the model is tested in a deuteron
stripping to unbound-state calculation.
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The concept of a resonance occurs very widely
in elastic, inelastic, stripping, and rearrange-
ment reactions in many areas of physics. Al-
though the properties of transition amplitudes
containing resonance poles are well understood
and widely used, a completely satisfactory pre. -.

scription for the resonance ~ave function is not
apparently available despite half a century of
work. ' ' Indeed the asymptotic behavior of the
Gamow wave function, ' which is an eigenstate of
the Hamiltonian, gives rise to a probability den-
sity which blows up exponentially at infinity. The
several variants' ' of the eigenfunction theories
likewise suffer from shortcomings which limit
their usefulness; e.g. , the modified (Hartree-
Fock) Hamiltonian of Nicolaides and Beck' does
not have a normalizable eigenstate with positive
energy and hence their procedure is not applica-
ble to the two-body problem considered below.
Similarly, among the class of wave-packet mod-
els" in which the resonant state

~ $„) is not an
eigenstate of the Hamiltonian but a superposition
of scattering states

~ P, ) at i=O,

~ ~, )=(2~2)- dk k'
~ ji„)p, '(k),

the existing models for p are unsatisfactory al-
though they lead to normalizable resonant states.
Specifically Fonda, Ghirardi, and Bimini's' state
gives double poles in the saturated T matrix at
all the dynamical points because of the incorrect
appearance of the Jost function D'(k) in the de-
nominator of p and neither Fonda, Ghirardi, and
Bimini' nor Schlessinger and Payne' have any
mechanism to fix the arbitrary numerator of p.

The need for a satisfactory resonance wave
function is crucial in certain areas of application,
e.g. , stripping to unbound states in nuclear phys-
ics where mere knowledge of the T matrix is not
adequate. For a reaction A(d, p)B*, B*-n+A
where A. is a spin-zero nucleus and B* the resi-

dual nucleus in a specific resonant state, the out-
going proton angular distribution o~(&) can be re-
lated through the distorted-wave Born approxima-
tion (DWBA) to a matrix element which explicitly
contains

~ X„), the neutron wave function in B*.
The usual artifacts employed for

~ y„) are the
n-A scattering state subjected to a Gaussian
damping' or to a contour rotation, "a. quasipar-
ticle state, ' or a weakly bound state. " All these
are not really resonant states and hence unsatis-
factory choices for

~ y„); instead, as Schlessinger
and Payne' point out, a normalizable wave-packet
state given by Eq. (1) should describe the final
neutron in the continuum. It should be borne in
mind that this normalizable state is not a bound
state but rather the precise probability of finding
a continuum state in it is

~
p~'. As mentioned

earlier, however, the existing wave-packet mod-
els" are unsatisfactory and in the present Letter
we formulate a model for a two-body resonance
wave function produced by a real sharp-cutoff
potential using in great detail the powerful tools
of analyticity in potential scattering and some
basic quantum mechanical constraints. This re-
sults in a proper and minimally unique formula-
tion for a resonant state. We shall also see that
in applications it gives considerably improved re-
sults. We believe that the present method of con-
structing resonant states has considerable poten-
tial for use in several areas of physics.

Consider a resonance j created by a real short-
range potential V in a given partial wave I. It
can be located through the zero of D'(k) lying in
the fourth quadrant of the complex momentum
plane at k,. =n-iy, i.e., at E, =k„' 2/p= „E-iI' 2/

in the second sheet of the complex energy plane.
The Gamow state' is then defined as

~ y„) =( ipk/v)a, (k, ) l-im
~ y, )

k~ kg

and a„'(k,. ) ~2vy/p' for narrow resonances. The
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vertex function" associated with I g„) is given by

a„.(p) =(pI VI g,. )=( i-pk, /v. )a, (k„) lim T (p, k)

in terms of a conjugate half-shell T matrix. In-
stead of

I g, ) we use Eq. (1) to define unstable
state of narrow resonance j and determine p as
described hereafter.

We first make
I $, ) equal to its time-reversed

state I $, ) to ensure that a single real wave func-
tion $,(r) alone will describe together the reso-
nance pole at k, and capture pole at -k,*. If we

impose then the plausibility conditions (i) that the
model vertex function Q,(p) = (pI VI (, ) be ap-
proximately equal to a,. (p), (ii) that the matrix
elements ($, IH I $, ) be finite for m =0, 1, 2, and

(iii) that the resonance saturated balf-shell ampli-
tude

R, '(p, k) = (pI vI (,&(g, I y, '& = &, (p)p, '(k)

possess approximately the same pole residues
at k = k, , -k „*as exact T'( p, k) and no poles at
positions of other resonances and bound states,
we can verify the following.

ProPosition: For a sharp-cutoff potential of
range d [i.e., V(r) —= 0, r &d] the minimal form of
the expansion coefficient consistent with the plau-
sibility conditions is

Oo. o ~, 0 (4, p)" 0 (5.083HcV)

50.0

all these features together could not be achieved
in any earlier wave-packet approach. "

It is now possible to compute the radial wave
function g,.(r) explicitly with use of Eqs. (1) and

(2). Because of space limitations we only men-
tion that g, (r) -- Re/, (r) for r &d, so that it is
regular at r =0 like r'. For r &3d, l &2, g, (r)
behaves like r '" . Both of these are desirable
features for our purpose of applications. Further
the time-dependent wave function $„(r, t) =- (r I

xe '"'I $, ) at a fixed large r and for t&0 has
been determined by the steepest descent tech-
nique, and also the outgoing flux across a large
sphere of radius ~. This results in an estimate
for n, , the number of lifetimes for which the
classical exponential law for yield is valid; n,
s tai fsiese xp(n, )/n, =~a'E /I with IeI «1. We
stress that in Refs. 3 and 4 only the survival
probability I (g, I $, (t)) I' was considered and not
the evaluation of $, (r, t) and the flux.

t, '(k) =x, (k) +(-) ' s'(k)x, (-k),
where

(2a)

X (k) =D (k)F(k) Y(k)/(k'-k ')(k'-k *')

I"(k) = (ik) ' exp[-i (kd —l~/2) ], 1"(k) = C, ' iC,k-.
The real constants C, and C, are obtained from
the relation

10.0E

CD

5. o

Co+iC, n = 2i p dna, .( -)n[/E( )n D(n) J. (2b)

The significance of condition (i) is that the wave-
packet state and the Gamow state couple with ap-
proximately equal strengths to the constituents
in a state of relative momentum p. The bound
states have been dropped in Eq. (1) to eliminate
their contributions to Q, (p). The condition (iii)
ensures a close correspondence with standard
Breit-Wigner amplitude. These two conditions
together with the finiteness of (H') are the new
features in our construction of

I g). Further we
point out that condition (ii) is satisfied in a min-
imal way by the linear form of V(k) in Eq. (2).
Moreover, many integrals can be done in closed
form while computing Q,(r) or (, (r) and also the
roles of resonance and capture poles have be-
come symmetrical in Eq. (2a). To our knowledge
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FIG. 1. DWBA calculation of the proton angular dis-
tribution for oxygen. The solid curve is with our wave
packet for the square well, the dashed curve is by the
damping method with the same square well, and the
dash-dotted curve is by the damping method for the
Woods-Saxon potential {Ref. 7). The solid circles are
experimental data from Darden et al. {Ref. 9). Inset:

{Z' /I")& ({r) for '7O~.
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To demonstrate the viability of our model in
applications we calculate o~(6) for the reactions
' O(d, p)"0* and "C(d, p) "C*using the DWBA.
Since the Woods -Saxon pote ntial is not analytically
solvable, we have replaced the neutron-nucleus
potential V„by a square well of range d and depth

Vp which corresponds to the given resonance
energy F. . This replacement is reasonable for
low-energy resonances when shape dependence of
the potential is not crucial. Now it is known that
a given set of potential (whether Woods-Saxon or
square-well) parameters reproducing the reso-
nance momentum n correctly fails to yield the
correct experimental width I",. Further $(r) be-
haves like I ~'q, (ax) outside the potential range,
I' being the single-particle width; therefore the
natural way to make this behavior correspond to

I; is to scale I $) by a known factor"' (I', /I )'~'.
Hence we use (r, /r)' 'I ],& for I y.„&. The poten-
tial parameters used are d =3.4 fm, Vp =36.7
MeV, I'=71.6 keV, and I', /I'=1. 26 for "0*;
and d=22 fm, Vp 90 0 Mev F 114 5 keV and

I,/I'=0. 057 for "C*.
The resonance wave function for "0*is shown

in the inset in Fig. 1; it falls rapidly with dis-
tance for x&7 fm. The DWBA integrations were

indeed very stable after about 50 fm. We also
see that Gaussian damping calculations with the
same square well as ours give almost equally
good fits to v~(8) at almost all angles. However,
whereas the normalization near forward angles
is gauranteed in our case, a spectroscopic factor
of 1.95 is needed for the latter. The damping-
method fit using Woods-Saxon potential' becomes
poor for 0& 60 . The contour deformation method'
as well as the damping method (with a. spectro-
scopic factor of 0.07) result in poor fits for 0

) 30' for carbon in Fig. 2 while our method gives
rather satisf aetory correspondence with experi-
mental data. This is because our expansion co-
efficients contain a Breit-Wigner-like denomina-
tor multiplied by factors which take into account
other structures in the momentum plane whereas
in the resonance-peak method' the scattering
wave function is arbitrarily fixed at the reso-
nance momentum and the neutron energy is inte-
grated out over a Breit-Wigner shape. Hence
the features obtained by us are not only compara-
ble but actually improved; this can be attributed
to the sound principles on which the resonance
wave function has been constructed. Let us men-
tion that we have not attempted to fit the proton
polarization data because of their sensitivity to
the spin-orbit term rather than to the nature of

I x. &

We have also extended the theory to separable
interactions and developed a scheme in which

I $, ) j I $, ). The form of p is so appealing that it
should apply even to potentials with a tail provid-
ed E(k) is chosen appropriately. Details shall be
discussed elsewhere. "
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FIG. 2. As in Fig. 1 but for carbon. The dash-dotted
curve is also from Darden et al. (Ref. 9).
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