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Upper and lower bounds are obtained for the potential energy of two-dimensional clas-
sical systems consisting of particles interacting via a short-range potential that has a
hard-disk core. The bounds coincide in the close-packing limit, implying that first-order
thermodynamic perturbation theory becomes exact in this limit.
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Thermodynamic perturbation theories have
proved to be extremely successful in describing
the behavior of simple liquids and solids near
their triple point. ' In this thermodynamic do-
main the relevant perturbation parameter is far
from small; it is of order unity in typical dimen-
sionless units of e/hT, where e is a measure of
interaction strength outside the highly repulsive
interparticle cores, k is Boltzmann's constant,
and T is the absolute temperature. It has long
been argued that the success of first-order theo-
ry for such thermodynamic states is due to the
stringent configurational constraint imposed on
a system of particles by their repulsive cores, '
but except in one dimension' rigorous results in
support of this plausible assertion have hereto-
fore been lacking. Here we give such a result.

We consider a classical two-dimensional sys-
tem of hf particles confined to the interior of a
hexagonal container of area A. The number den-
sity is p=N/A. The potential energy is the sum
of a potential U, that describes a reference sys-
tem of N hard disks of diameter a plus a per-
turbing term U that describes pairwise interac-

&u) -f-f, - &u)„ (2)

where ( ~ ~ ) denotes an ensemble average in the
perturbed system. Our theorem below gives
upper and lower bounds (31) and (32) on u, and
hence on (u) and (u),. Thus from (2) our theorem

tion of the disks via a short-range pair poten-
tial. 4 To facilitate applying our results to the
thermodynamic limit, N-~, A-~, p finite, we
introduce u= U/Ã. In terms of the Helmholtz
free energy per particle f, first-order thermo-
dynamic perturbation theory for the system we
consider is the approximation

f =f, +(u) .
Here ( ~ ~ ), denotes the canonical ensemble av-
erage taken with respect to the reference system
at the W, A., and T at which the other terms in
(1) are evaluated. We use the subscript zero
throughout to denote hard-disk reference-system
quantities. The approximation (1) is an upper
bound on f according to the well-known Gibbs-
Bogoliubov inequalities, which, for the system
under consideration, have the simple form
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P, (O,, +o,, ') =2~ (5)

and the perpendiculars h;„satisfy the condition
h,.~ ~ —,'a. The total number v of perpendiculars
satisfies' (with i = 1, . . . , N)

v=P; v, -6N. (6)

Every edge in the network of polygons P; is
either part of the perpendicular bisector of the
line between two disk centers or else part of the
boundary of B. Therefore, if we denote by v

the number of perpendiculars A, , whose lengths
are less than —,'b, we have

v„-2P(a, b) +N ~, (7)

also yields the same bounds on f-f„and since f
= (u)+kT —7k, where s is the entropy per par-
ticle, our result yields similar bounds on s —s,.
Since these upper and lower bounds coalesce as
p approaches the close-packing density p, p

T
arbitrary, our bounds are all sharp in the vicin-
ity of p= p, . Moreover in the limit p-p, „, f-f,
—(u), and hence (because f, =k T —73,), & —&, - 0.
Thus first-order thermodynamic perturbation
theory is exact for the system in this limit.

Our theorem rests upon two lemmas.
I.emm, a 1.—If a convex hexagon B contains N

nonoverlapping disks of diameter a, and if fewer
than 3N(1 —n) —I.(a+b)/4wa' pairs of these disks
have center-to-center separations less than 6,
where 0 & n & 1 and a & b & 2a/v 3 = (1.1547. . . ) a,
and I- is the length of the perimeter of B, then
the area A. of B satisfies

A/A, ~ 1 + n p(l -+2 p), (3)

where A,z
= —,'&3Na' is the area at close packing

and P = b'/a' —1.
Proof of lemma 1.—We denote the centers of

the N disks by C„C„.. . , C~. To each C; we
associate a polygonal region P, consisting of all
those points within B which are closer to C, than
to any other disk center. Denoting the area of
the ith polygon by A;, we have (with k = 1, . . . , v, ;
i=1, . .. , N)

A =P,A, =Q,P„-,'k, , '(tan&, „+tane, „'),
where ~, is the number of edges of P,, A,.„ is the
length of the perpendicular from C, to the kth
edge of P;, and 6);, and 0;,' are the angles be-
tween this perpendicular and the two lines join-
ing C, to the ends of this edge. The angles 8,,
satisfy the condition (with k = 1, . . . , v,. ; i = 1, . . . ,
N)

centers whose separations lie between a and b,
and N~ denotes the number of disks whose centers
are within a distance —,'6 of the boundary of B.
These N~ disks are entirely contained in a strip
of width —,'b+ ~a just inside the boundary of B;
the area of this strip is less than (-,'b+ ,'a)1- w—here

L is the perimeter of B, and since each disk oc-
cupies area &a' we have

N ~ & ,'b + —,'a—)I./va'. (6)

Combining this with (7) and using the upper bound
on P(a, b) required by the statement of the lemma,
we obtain

v„~6N(1- n) . (9)

For each perpendicular h, , there are two angles
0,-» 0,,'; let the mean of the 2v angles for which
—,'a -h, ~ & —,'b be 0„, and let the mean of the 2v
-2v angles O,.„and 9,.„' for which h, , --,'b be 68.
Then it follows from (5), after summing both
sides over i and separating the terms for which
h,.„&—,'b from those for which h, , - -2b, that

2v 0„+2(v —v„)VB =2&N. (10)

applying a similar decomposition to the double
sum in (4) and then using Jensen's inequality for
convex functions (in this case the tangent function)
we obtain

A ~ -,' a'v tan & + 4b'(v —v„)tanP s

= —,'a2[v„tan&„+ va(1+/)tangos],

where P= b'/a' —1 and vs= v —v„.
To combine the inequalities (6), (9), and (11)

into a useful formula, we define two angles y,
y8 by the equations

(1 —n) y„+n q 8
——v/6,

sec'cp„= (1+P) sec'y z

(12)

(13)

Now we use the convexity of the tangent function
again, in the form

and the condition 0 ~ y ~ n/2 (p= y„, &y~). By con-
sidering the behavior of the function sec'x —(1
+P) 'sec'I(~/6- cn)/(1 —n)] as x decreases from
~/6, and using the condition b ~ 2a/f3 which im-
plies P& ~, Eqs. (12) and (13) can be shown to
have a unique solution, satisfying the further con-
dition

where P(a, b) denotes the number of pairs of disk tanV - tan&@ +(9 —&jr)sec'y. (15)
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Using this and then (13) jn (11), we obtain

4A/"-(& ~ +&8~8»ec'V -~.lf(P ) -(1+p)f(q))J —&(1+p)f(q)),
where f is defined by

f(x) =x sec'x —tanx (0 ~x & n/2) .
This function has the properties

f(x) = -,'[ 2x - sin2x] sec'x ~ 0

and [by (13) and (14) J

f(y ) -(1+P)f(ys) = 2&[2/ -sin2q~]-[2y, -sin2cysj] sec2q „~0

(16)

(17)

(18)

(20)

since 2x —sin2x' is an increasing function for 0 -x r/2. Now we insert Eqs. (10) and the inequalities
(6) and (9) into (16); making use of (18) and (19) as well, we obtain

4A/a' ~ ~N sec'y —6N(1 —o.)[f(y ) —(1+P)f (y z)] —6A'(1+ P)f(y 8) .
The right-hand side can be rearranged, using
first (17) to eliminate f, then (13) to eliminate
sec2y 8, and finally (12), to give

4A/a' ~ 61V[(1 —a)tan cp„+o(1 + P) tang 8]. (21)

To derive a simpler lower bound on A, we de-
note the right-hand side of (21) by 6Ng(p), treat-
ing n as a constant. This definition, together
with (13) and (12), implies that

&=1-P(a, b)/3N-L(a+b}/12~a'N

its result can be rearranged to give

(27)

to place more than six disks so that their centers
are within a distance ~, of the center of another
disk, without overlapping, unless ~, - —,'acosee 7

The other bound comes from lemma I; for with
the choice

dg(P)/dP = n tanyt).

By (13) and (14), we have the lower bound

(22) A/A „-1 L(a + b)
(26)

tan2+g = see2qr 8 —1

&(1+p) 'sec'))/6 —1=(l -3p)/3(1+ p)

--.'(1-sp)' (o - p&-,'). (23)

g(P) &g(0)+ o.J, (1-sp)dPI&~

=ll+~(P ~P')]I&~. (24)

Using the definition of g and combining with (21),
we obtain a lower bound on A which is equivalent
to the one given in the statement of lemma 1.

I-em~a ~.==-Jnder the conditions of lemma 1,
the number P(r„r,) of pairs of disks whose cen-
ters are separated by distances in the interval
[r„r,), where a r, &~r, & 2 a cosec ,' v = (1.15—24

... )a, satisfies

Using this in (22), and then integrating from 0 to

P, we obtain

dy,. -0, d@„-0, dy = d(p ~ + dc/& ~ (so)

Then for all configurations in which no interpar-
tiele separation is less than a, the potential en-
ergy per particle, u, has the bounds

w-3r(a) —3 min 3, '-'~ -)- — I)dr, (v)I,(p../p) —1

The lower bound on P(a, r, ) in lemma 2 now fol-
lows (since —,'cosec —', ~ & 2/3)3 ) on replacing b by r,

Theorem. —In a two-dimensional system of par-
ticles with hard-disk cores of diameter a and a
pair potential qr(r) outside the core, let y(r) be
continuous as ~ )a, bounded for all ~~a, and
zero for r&c, where c = —,'acosec —7)T =(1.1524
. . . )a. We split y(r) into an increasing and a de-
creasing part with

j,(c) = &p, (c) =0 (29)

and

where

A/A „—1 L(a+r, )4„,'--P(a, r,)-SN, (25)

u &sy(a)+ 3

(31)

min 1, '-'
~ dy, (r), (32).(I ../p) —1

a
—

2 r r

P, = r, '/a' —1. (26)

Proof of lemma 2.—The upper bound P(a, r 2)
-3N follows from the fact that it is not possible

where p„=(r/a)'-1, p is the number of particles
per unit area, and p, z

= 2/a'l3 is the value of p
at close packing.
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Proof of the theorem. Define

p(r ) = lim P(a, r )/N;
g -woo

then lemma 2 gives

(33)

u= J y(r)dp(r). (37)

Now the potential energy per particle is, with c
=

g &cosec 7 &

and

p(r, ) -3 (34)

(35)

p(r, ) &3-3min 1, (t,./~) —1

-22 2
(36)

p(r ) o3 3(v../t) -1
(1-.~.)~. '

where p, =(r,/a)' —1. Since p(r, ) ) 0, the bound
in (35) can be strengthened to

u= -J p(r)dy{r), (38)

u=-J p(r)dq;(r) - J, p(r)d p~(r),

using (32). From (34) and (35), (39) yields

(39)

Since p(a) =0 and y(c) =0, integration by parts
gives

u - - 3 dy;(r) + 3 -3 min 1,,
'-' id@„(r) i

I
' (1-~~„)tl„

3dy(r) -3 min 1, '-' id@,(r) i

a a

(40)

u-- 3 —3min 1, '-'~ ——dy, (r)+J 3idp, (r)i(Io„lp) -1
0

3 dy(r) +3 min 1, '-' d(p,.(r)
a 6

(42)

(43)

from which (31) and (32) follow.
It is a simple corollary of this theorem that in

the close-packing limit, the energy per particle
approaches a close-packing value of 3y(a):

lim u = 3y(a) . (4
~cp

The corresponding result for three dimensions,
which we believe but cannot prove, would be

lim u=6y(a).
Cp

{45)
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can be understood on the grounds of the linearity of
the free energy as a function of X= e/kT expected for
Large as well as small A, (fixed density) in many sys-
tems, and also expected for the high-density limit
(fixed A) considered here.
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