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Strong-Coupling Theory of Charge-Density-Wave Transitions
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The order-of-magnitude discrepancy between the predictions of the weak-coupling the-
ory of charge-density-wave transitions and the observations is rectified by construction
of a microscopic strong-coupling theory. The essential ingredients of the theory are the
strong wave-vector dependence of electronically induced anharmonicity and mode-mode
coupling which are shown to strongly depress the transition.

PACS numbers: 71.38.+i, 63.10.+q

The Peierls-Frohlich" theory of charge-den-
sity-wave (CDW) transitions is based on the weak-
coupling limit of electron-phonon interactions. It
consists of the calculation of the lowest-order
phonon self-energy represented in Fig. 1(a); it is
mathematically similar to the BCS theory of sup-
erconductivity and predicts that the ratio of the
jump in the specific heat AC at the transition
temperature T, is b. C =10.2k 'sT, N( 0) and that
the ratio of the CDW gap 4 at T =0 to that at T,
is 2b, /AsT, =3.52. Experimental results are
typically an order of magnitude at variance with
these predictions. For example. in 2H- TaSe„a
mean-field fit to the data gives a jump in the
specific heat about 5 times larger' and the ratio
6/T, is about 8 times larger' than the predicted
value.

The temperature dependence in the weak-coup-
ling theory arises solely from the Fermi factors
in the self-energy shown in Fig. 1(a). More phys-
ically, this amounts to the entropy considered in
the theory being that of the electrons alone.
McMillan' observed that the large ratio of 4/T,
implies that the correlation length in the transi-
tion is very small —of the order of a few lattice
spacings. This means that phonons over a sub-
stantial part of the Brillouin zone are affected
(soften) near the transition, ' and that their con-
tribution to the entropy can be much larger than
the electronic entropy. Using the experimental
results, McMillan showed that this idea consis-
tently explains the observations. This leaves one,
however, with the need for a microscopic strong-
coupling theory, which explains why the transi-
tion temperature is depressed an order of mag-
nitude from the predictions of the weak-coupling
theory even though the gap is a substantial frac-
tion of the Fermi energy (thereby giving the small
correlation length), and which explains the strong
temperature dependence of phonons near the tran-
sition temperature.

The temperature dependence of phonons can

AJ V'M

(a)

urn. r
(b)

VVV .'- -Xnn.
FIG. 1. (a) Irreducible self-energy calculated in the

weak-coupling theory of charge-density-wave transi-
tions. The electron-phonon vertices are to be cal-
culated as in Ref. 7. (b) Cubic, and (c), (d) quartic
anharmonic self-energy of phonons. The anharmonic
vertices arise from multiple electron-phonon scatter-
ing as indicated and are strongly wave-vector depen-
dent where the contribution of (a) is large. (d) can be
shown to be much smaller than (c) by appeal to Mig-
dal's theorem.

a,rise from Fig. 1(a) (this is negligible), or from
mode-mode coupling due to lattice anharmonieity.
The interatomic forces in transition metals and
compounds can be usefully divided into two con-
tributions: (1) a short-range part arising from
the difference in ion-ion and (static) electron-
electron interactions and (2) a part from electron-
ion scattering. The leading (harmonic) contribu-
tion of (2) is Fig. 1(a). The anharmonic contribu-
tion from (1) can be estimated; its magnitude in
the important region around the critical phonon
wave vector can be shown to be small compared
to the anharmonic contribution of (2). More sig-
nificantly, its wave-vector dependence is rather
smooth and cannot explain the observed behavior
of phonons. The point is that the experiments re-
quire that in the region of anomalous phonon dis-
persion in the high-temperature phase, the pho-
nons be strongly temperature dependent. This
means that the anharmonicity must also be strong-
ly wave-vector dependent, so that it provides a
stability to such phonons at high temperatures.
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Its effect decreases as temperature decreases.
The extra stability must be.large enough to drive
the transition temperature downwards by an order
of magnitude to explain the experiments. We will
show here that the Fermi-surface features that
lead to anomalous (but nearly temperature-inde-
pendent) phonon dispersion near specific q vec-
tors due to Fig. 1(a) can also lead to a large wave-
vector dependence near such q vectors for the
anharmonic interaction. On the basis of this cal-
culation, we construct a strong-coupling theory
of CDW transitions.

A method to calculate anomalous phonon dis-
persion due to Fig. 1(a) has been developed' ear-
lier based on the tight-binding representation for
electronic structure. A crucial point is that the
electron-phonon vertices are strongly momentum
dependent and change completely the condition
for phonon anomalies from that in the conventional
nesting theories. With some approximations,
the wave-vector dependence of the electron-pho-
non matrix elements g» is given by'

ga'-( a- a ).

where v, and v„. are the electronic velocities for
initial and final states, respectively, for scatter-
ing by a phonon of wave vector k —k'. This meth-
od has been used to explain quantitatively the ob-
served phonon anomalies" in a wide number of
transition metals and compounds. The structural
transition" at T=O from the bcc to the ~ phase
in Nb„Zr, „alloys as a function of x is also ex-
plained. Qualitatively, phonon anomalies occur
for wave vectors q=k —f' where the difference
in electronic velocities ~v„—v„.

~
is large in the

direction q and the velocities v~ and v, are
small in a direction transverse to q. It is easily
seen that if the elementary vortex q». is large
for some k —k', the vertices in the anharmonie
terms in Figs. 1(b) and l(c) can be even more
strongly wave-vector dependent. This will be
explicitly seen below.

We have calculated the expression for the an-
harmonic vertices involved in Figs. 1(b)-1(d).
These straightforward but lengthy expressions
will not be exhibited here. Suffice it to say that
one generates a phonon Hamiltonian

Z = ~~~,~ u, ~u, ~+g V (1, 2, 3)u2u2u, 6(q2 + q, + q, ) + Q V (1, 2, 3, 4)u, u2usu, 6(q2 + q, + q, + q, ), (2)

where in the first term we have included the contribution from the short-range force constants as well
as the contribution of Fig. 1(a). The second and the third terms are the vertices in Fig. 1(b) and Figs.
1(c) and 1(d), respectively. u, ], is the phonon displacement of wave vector q and polarization A; 1
stands for qyAy, ete.

A free energy based on this Hamiltonian can now be constructed with use of a trial density matrix,

p, = +exp[ mg, ],-'(u, ~-u, „)']

with

E=E- TS,

Z=Tr(p, a),

S=k,(p, lnp, ).

(4)

(6)

E=g,mn, ~'(T)u, ~'+g, V,(q, —q, q, —q)u, ~',

where for u, &=0, the phonon frequencies are given by"

1 iV, (qA, 1, 2) I'
] +16 ~ O(l)g(2) 5(q+1+2)

[1+n(1)+n(2)][12(1)+12(2)] [12(2)— (l1)2][m(1) —g(2)])
O, ~' —[0(1)+Q(2) j' 0,],

' —[Q(1)—Q(2)]'

+- Q V, (qA., —qA, 1, 2) 6(1+ 2).
1 1+2n(1)

Q 1

The last two terms in (8) represent the contributions of Figs. 1(b) and 1(c), respectively, in which h
internal phonon lines are self-consistent; thus an infinite number of terms are summed. ln Eq. (7)

(8)
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Q, z and u, ~ are used as variational parameters. This procedure generates the self-consistent harmon-
ic approximation for phonon frequencies" and generates an expression for the free-energy,
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g7, „are the static distortions below the transition.
Within mode-coupling theory all aspects of the
statics and the dynamics of the phase transition
for any CDW material can be obtained from Eqs.
(7) and (8), provided the coefficients are calcu-
lated from the microscopic theory described.

The microscopic theory requires the knowledge
of the electronic structure for any given material
and of the variation of tight-binding integrals with
distance. To establish the physical points we have
performed calculations with a simplified band
structure described by Inglesfield, "in which only
nearest-neighbor Ta bonds are considered, which
is a fair representation of the band structure of
1T-TaS, near the Fermi surface. 1T-TaS, has a
CDW transition at wave vector q =0.57, with
longitudinal polarization, along the I'M direction
at T =350 K. The contribution of Fig. 1(a) to the
phonon frequency at T= 0 (already calculated by
Inglesfield) is shown in Fig. 2, at two tempera-
tures 0 and 10' K. An anomaly at the right wave
vector is predicted, but as discussed earlier the

temperature dependence is negligible. (It will be
soon obvious that with this contribution alone the
transition temperature would be predicted to be
a few thousand degrees!) Also shown in Fig. 2

is one of the fourth-order anharmonic coefficients
(the largest). They peak sharply near the critical
wave vectors as discussed. Their contribution to
stabilize the phonon frequencies will be consider-
ably smoother, since integrals over the zone and
many different anharmonic coefficients are in-
volved.

In Fig. 3 the longitudinal phonon frequencies
along the I'Af direction in the high-temperature
phase are shown for various temperatures with
calculations using Eq. (8). Just as in previous
theory the short-range harmonic force constants
are parametrized (two parameters for nearest-
neighbor forces only) to fix the sound velocities.
No adjustable parameter enters in the calculation
of the temperature dependence or in calculation
of Fig. 1(a). The strong stabilizing effect of the
anharmonic phonons in the anomalous zone is evi-
dent. On the basis of the temperature dependence
of the phonons around the critical wave vector,
the specific heat near the transition can be cal-
culated. Just as in any mode-coupling theory the
prediction is (2wgo) j(T- T, )/T, ] '~' per unit
cell in three dimensions, where g, is the correla-
tion length obtainable from the calculated phonon
dispersion. If we assume that the correlation
length in the direction transverse to the hexagonal
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FIG. 2. Left scale: The contribution of Fig. 1{a) to
the self-energy of longitudinal phonons along I'I at 0
and 103 K. Right scale: One of the anharmonic coeffi-
cients with all q along I"M and all polarization longi-
tudinal. Calculations have used a model band structur'e
for 1T-TaS&.
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FIG. 3. Longitudinal phonon frequencies in the |M
direction for various temperatures, calculated as
described in the text.
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planes is similar to that in the plane, we get an
upper limit to correlation length g„ from our cal-
culated phonon dispersion near T„given by n$,
s 20 A. Experiments on high-quality crystals of
2H-TaSe, have been quantitatively analyzed to
give' C(T) =(2sg,) '[(T- T,)/T, ]

'"'' '~s5 with
n$, = 14 A. The agreement of the theoretical ex-
ponent with the experimental value is not signifi-
cant; we cannot claim to have a correct theory
in the critical regime. What is significant is that
we obtain the correct magnitude of the correlation
length from the microscopic strong-coupling the-
ory. From this correlation length, we estimate
24/T, ~ 23 compared to the experimental value
for 2H-TaSe, of -28 and a mean-field value of
3.52. It may be argued that our calculations are
for 1T-TaS, while we are comparing with results
for 2H-TaSe, . The point is that the strong-coup-
ling effects are similar in magnitude for all CDW
transitions which have been carefully measured. "
For 1T-TaS„where the band structure is simple
enough to perform the first calculations with the
theory presented here to establish the basic phys-
ical points, only room-temperature neutron scat-
tering results are available. " Comparison of
these results with the neutron scattering results
from 2H-TaSe, (Ref. 6) at the same normalized
temperature (normalized with respect to T, )
yields the result that the two materials have near-
ly the same correlation length g,.

In summary, w'e have constructed a microscop-
ic theory for the statics and dynamics of strong-
coupling charge-density-wave transitions. The
theory entails a calculation of the wave-vector
dependence of anharmonicity and the temperature
dependence of phonons. Electronically induced
anharmonicity and mode-mode coupling are shown
to lead to a large depression in transition tem-

peratures, thus explaining the short correlation
length and the consequent large observed values
of 6/T, and the specific heat near the transition.
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