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Exciton Line Shapes at Finite Temperatures
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Equations of motion for excitons in molecular aggregates obtained from stochastic
Hamiltonian models are known to be applicable only at infinite temperatures. It is argued
that the problem lies in the omission of dissipative contributions that must be present if
the excitons are to achieve thermal equilibrium. Stochastic equations of motion are con-
structed that are applicable at finite temperatures. As an application of the model optical
line shapes are considered.

PACS numbers: 71.35.+z, 78.50.-w

&= QE»a» a» + P V„(t)a„a (I)

Here a, and a, are respectively creation and
annihilation operators of an exciton with momen-
tum k and energy Ek. The operators a„~ and a„
create and destroy an exciton localized at the nth
site of the lattice and are discrete Fourier trans-
forms of the operators a, and ak. The fluctuat-
ing functions V„(t) model the fluctuations in the
site energy (n = m) and in the interactions (n i~ m)
of localized excitons due to the scattering of
excitons by phonons. The fluctuations are as-
sumed to be zero-centered, Gaussian, and delta-
correlated in time. " This model is formulated
for rapidly relaxing fluctuations and is hence
appropriate only for a small exciton bandwidth
relative to the phonon bandwidth. The results
obtained from the Haken-Strobl model are well
known to be valid only in the infinite-temperature
limit. Thus the temperature dependence of trans-
port coefficients and line shapes cannot be deter-
mined from this model.

The Haken-Strobl model has been generalized
in a number of useful ways. Sumi4 and Blumen
and Silbey' considered nondelta-correlated site
energy fluctuations, with

(V„„(t)V (t')) =D'exp(-y~ t —t' ~)6„„. (2)

Nondelta-correlated transfer integrals have been

One of the most useful theories of energy trans-
fer in molecular crystals is originally due to
Haken and Strobl" and has since been used and
extended by other authors. ' ' In this theory, the
exciton-phonon coupling is treated phenomeno-
logically and semiclassically via the introduc-
tion of a stochastic term in the Hamiltonian. The
Hamiltonian is assumed to have the form

dealt with by Jackson and Silbey. ' The param-
eter y in (2) is a measure of the phonon band-
width, and D is the average amplitude of the po-
tential fluctuations at each lattice site. We note
that this generalization (and in fact any general-
ization of the stochastic model to date) does not
per se introduce a temperature.

In spite of the restriction of these models to in-
finite temperatures, their tractability has engen-
dered their widespread use. These models are
assumed to be capable of representing a gamut of
exciton-phonon interactions from weak to strong
and from local to nonlocal. The variety of possi-
ble interactions is manifest in different statistical
properties chosen for V„(t). It would therefore
be highly desirable to have available a phenom-
enological model built on premises similar to
those adopted by Haken and Strobl but applicable
at finite temperatures. Such a model would en-
able one to calculate the temperature dependence
of transport and spectral properties. In this
paper we propose such a model. ' We note that the
problem of exciton dynamics at finite tempera-
tures has been approached by means of fully
dynamical models. " However, this approach
has been limited by the technical difficulties in
calculating physical observables.

The exciton operators are assumed to obey
Bose-Einstein commutation relations, an approxi-
mation which is valid at low exciton density. The
equations of motion of the exciton operators are
then

a, (t) =i [a, a»]
=-iE a (t) —iZ+ (t)a (t)

kl

where the fluctuating coefficient Ekk is a Fourierkkl
transform of the Hamiltonian potential fluctuations

1370 1983 The American Physical Society



VOLUME 51, NUMBER 15 PHYSICAL REVIEW LETTERS 10 OCTOBER 1983

in (1). The model with which we propose to replace the Haken-Strobl-type models is described by the
equations of motion

a, (t) =-iE~a~(t) aZ F»(t)a, (t) —5~ pp (E„,-E, ) f dry, »x(t r)a„(r)a„(r)a (t) (4)

and its Hermitian conjugate for each k. The new

contribution appearing in our model is the last
term in (4). We identify this as a dissipative
contribution which has been absent in all prior
stochastic formulations of the exciton transport
problem. The crux of the morsel lies in the choice
of the dissipative kernel K& „,""'(t), which must
satisfy the physical constraints described below.

The choice of the kernel is dictated by the fact
that the last term in (4) results from the aver-
age interaction of the exciton with the heat bath.
Contrary to the usual statements ' ' this average

interaction cannot be included in E„because it
is irreversible and can therefore not be incorpo-
rated into a purely excitonic Hamiltonian. The
combined exciton-phonon system is thermody-
namically isolated, and the exciton system is
thermodynamically closed. It then follows that
the kernel and the fluctuations F»,(t) must be
connected by a fluctuation-dissipation relation
This relation depends on the temperature and on
the nature of the interactions between the exci-
tons and phonons, and can generally be expressed
as'"

4-=~(Z„„(t)S„„(t+r)r,, (t))= f drg(p, t, r)Z, , "' (r), (5)

where g(p, t, r) is a scalar function of the temperature. We note that (5) is unusual in that the fluctua-
tions are not dissipated instantaneously. '"" The correlation time of the fluctuations is thus tempera-
ture dependent.

The physical properties of the fluctuations and of the dissipative kernel can be derived from fully
dynamical models of the exciton-heat-bath system. The differences among models manifest them-
selves in g(P, t, r). For instance, consider the "linear coupling model'""'

The operators 5, ~ and b, respectively create and annihilate a phonon of wave vector q in branch n.
The last term in (6) expresses the exciton-phonon interactions. The exciton equation of motion ob-
tained after explicit integration of the phonon equations is precisely (4) with'

E»,(t) =Q„ I'„,„[&,„t(0)exp(i(u, t) +b,„(0)exp(-i(u, „t)]0, , „„, (8)

g(p, t, r)

2m 2V

2p p
= —csch —(t+r) +csch —(t —r),

where p =(k, T) '. Equation (8) is interpreted
as a fluctuating energy because the initial phonon
operators are chosen from a canonical ensemble.
The fluctuation-dissipation relation dictates that
one must retain terms only to O(I") in the fluctua-
tions if one retains terms to O(I') in the dissipa-
tion. This has been done above.

The function g(p, t, r) of Eq. (11) decays on a
time scale t-r-p. We believe this tobe a, gen-
eral (Hamiltonian-insensitive) feature. " The
relation (5) then implies that the decay rate of 4
either is the same as that of K (high-T limit') or

! is k BT, whichever is shorter. When y is the
shorter of the two, then the dissipative response
of the bath is instantaneous so that g(P, t, r)
=g,(p)5(t-r) (this result does not imply delta-
correlated fluctuations). '" This limit yields a
classical fluctuation-dissipation relation and is
independent of the detailed dynamical model. "
For the linear coupling model g, (P) - P

' so that
the fluctuation level D2 is proportional to tem-
perature. ~

To compare our results to those of the Haken-
Strobl-type models we choose the dissipative
kernel to be local and site diagonal with a simple
exponential correlation function, so that

(10)
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We note that it is physically more reasonable to
choose the dissipative kernel phenomenologically
and then use the fluctuation-dissipation relation
(5) to specify 4 rather than the reverse. " The
coefficient e has dimensions of energy and consti-
tutes an additional parameter, previously un-
recognized in stochastic Hamiltonian formula-
tions, that plays an important role in exciton dy-
namics. The linear coupling model provides an
interpretation of this parameter in terms of mi-
croscopic quantities: e-I'/Q „, where I; is a
typical exciton-phonon coupling energy and 0»
is a typical phonon energy. From (10) and (5) we
conclude that the correlation function C of the
fluctuations decays on a time scale y

' at high
temperatures and (k, T) ' at low temperatures.

Sumi and Silbey pj, al. ' ' have emphasized
the importance of considering the exciton band-
width (B), the phonon bandwidth (y), and the fluc-
tuation level (D) in the transport and spectral be-
havior of the excitons. In the spirit of their dis-

cussion we are now able to introduce the two ad-
ditional energy parame. ters that affect exciton
dynamics, namely, the temperature 4BT and the
exciton-phonon coupling strength e. Heretofore
the former has been assumed to be infinite (i.e.,
much larger than y and B) and consequently the
latter has been assumed to vanish. Let us now
consider what happens when &BT is finite and e
is nonvanishing. Since Eq. (4) is nonlinear, its
detailed analysis is difficult. We therefore re-
strict our investigation here to a set of approxi-
mations that are often made (in other mode-coup-
ling contexts)" without more justification than
their physical plausibility. We make the follow-
ing approximations within the integrand in (4):
(1) We retain only diagonal terms. (2) We approxi
mate the evolution of a~ ~ and a„by their evolu-
tion in the absence of the heat bath. (3) We re-
place the diagonal quadratic terms in the sym-
metrized product by unity (low-exciton-density
approximation). The resulting equation is

a„(t) = -iE„a„(t)—i p E„„(t)a„ (t) —~„(t)a,(t) .
1

In terms of the exciton density of states g,„(v), the dissipative coefficient x, (t) is given by

Z„(t) =e Jd(ug, „((u) ', ', jl -exp[i(E, —~+iy)t]}(E, —(u)[y+i(E, —u))]
(12)

The exciton ].ine shape obtained from the solution to (11)up to the second cumulant, '"with A„(t)
= J

'
A, (t ')dt', is

f, (u)) = —He f d~exp[i(u) E,)r —A,-(7)] exp[- J, d7| J, d72 q(7& —72)G~(~| ~2)] ~

Here A(a, t) is A„(t) with E, replaced by ~, y(t) —= e J f(P, t, 7)e ~'d7, and

G,(t„t,) =exp[iE, (t, —t,)]exp[A, (t, ) —A„(t,)]fde g,„(~)exp[-i&a(t, -t,) J

xexp(-[A(u, t, ) —A((u, t,)]] . (14)
The line shape (13) has the same "formal"

structure as that for the Haken-Strobl-type mod-
els but with two important modifications: (1) We
include the new dissipative term A„(t) both in
the r integrand and in the modified exciton spec-
tral correlation function G, (~„7,); and (2) we
take into account the fluctuation-dissipation rela-
tion. We examine the line shape in different par-
ametric regimes. When D -&B +y and D)~ E&

the absorption line is broadened at each lattice
site. For moderate frequencies one obtains a
Gaussian, 4' i.e.,

(15)

with width proportional to D' = [D'+ c,Be]'i' where

!c, is a real constant of order unity. Thus the
square of the linewidth is still linear in the tem-
perature (Haken-Strobl-type models with D'
-k, Z')4 but contains corrections dependent on
the exciton bandwidth B and the coupling strength

If D2 &a but Still D ))B +y, then the line
shape remains Gaussian but the correction be-
comes small. If D'«B'+y' and E «B +y'
then the line shape is approximately Lorentzian
with the width given by

D2 eyBI - 2 —[(B'+E')' ' —E]+cB2 B +y

where E= y if y(kBT and I =A&T if y) ABT, and
where c is again a real constant of order unity.
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FIG. 1. Sketch of linewidth I' vs AB& for typical
parameter values in molecular crystals. g= 40 cm
y = 80 cm ', q = 25 cm ', and D2 =ek~T. Dashed
line: Haken-Strobl-type model. Solid line: our model
with c= 2.

The Haken-Strobl-type models yield I' -(2D'/
B'}[(B'+y'}'~' —y]." The temperature depend-
ence of our results in this regime is quite differ-
ent from those of the Haken-Strob1-type models.
The difference is most pronounced when gg & y.
We have illustrated this in Fig. 1. Furthermore,
the additional e-dependent contribution can be ap-
preciable and in fact large~ than the Haken-Strobl
contribution at low temperatures.

Regardless of the particular form of the line
shape, the dissipative contribution of our model
thus induces a broadening in addition to that ob-
tained in the Haken-Strobl-type models, with a
different temperature dependence. An estimate
of the magnitude of the corrections shows that
they may be appreciable for excitons in molecu-
lar crystals even at ordinary and certainly at

low temperatures.
We have extended the usual stochastic formula-

tion of exciton transport' ' so as to obtain a de-
scription valid at finite temperatures. We have
shown that the average exciton-phonon interac-
tion leads to an irreversible dissipative contribu-
tion in the equations of motion, a contribution
that has been absent from previous stochastic
models. The dissipative term is related to the
fluctuations via a fluctuation-dissipation relation
that ensures thermal equilibration of excitons
with the phonon bath. The dissipative effects,
being irreversible, cannot be built into a purely
excitonic Hamiltonian.
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