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Rotating superfluid 3He-B is found to possess a new contribution to the NMR frequency
shift, which changes sign on reversal of either the angular velocity of rotation or the
magnetic field. For p = 29.3 bars this gyromagnetic effect shows a discontinuity in
magnitude at the first-order phase-transition temperature 7 /7, = 0.6, at which a change
in the vortex-core structure takes place. These observations support the conclusion that
the vortex core possesses a spontaneous intrinsic magnetization.

PACS numbers: 67.50.Fi

A wealth of new fundamental phenomena per-
taining to vorticity in anisotropic superfluids has
been discovered in recent NMR measurements on
rotating superfluid *He.! Here we report first
measurements on gyromagnetism in superfluid
3He-B. The physical effect is quite unique and
has no counterpart in superfluid *“He. In contrast
to usual gyromagnetic features, the effect in *He-
B is inherently related to the peculiar symmetry
break in the p-wave paired condensate. Gyromag-
netism is observed in the measurement via the
NMR frequency shift, which depends on the rela-
tive directions of the angular velocity of rotation
2 and the applied magnetic field H. The gyromag-
netic contribution to the frequency shift is inter-
preted as arising from the spontaneous magnetic
moment of vortices. This would imply that at
least a fraction of the vortex core consists of
liquid 3He in a nonunitary pairing state, signifi-
cantly different from the isotropic Balian-Werth-
amer state.

The equilibrium B phase is described by the
order-parameter matrix A;, = A(T)R,(#, 6)e ',
where A(7) is the energy gap and ¢ is an arbi-
trary phase factor. This state is obtained from
the simplest 3P, state, which corresponds to the
order parameter A;,=A(7)5;.e"% by a relative
rotation of spin (a) and orbital (i) coordinate
spaces through an angle ¢ about an axis #, de-
scribed by the matrix R, (#%, 6). Therefore, sup-
erfluid 3He-B manifests a subtle broken relative
spin-orbit symmetry. The angle § minimizing
the nuclear dipole interaction is ¢ =arc cos(- %).
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The experimental quantity of interest here is
the NMR frequency shift Av which in the B phase
measures the angle 8 between the anisotropy axis
7 and the external field. The frequency shift in
the NMR spectrum thus reflects the # texture and
allows one to deduce the symmetries and relative
magnitudes of the different textural free-energy
contributions.? These include the magnetic field
term F, =-a(A -H)?, the bending free energy Fg,
and the surface term Fg, which provides the
boundary conditions. In the high-field limit, ap-
propriate to the present measurements performed
at 28.4 mT, Fg=-d(3;R;,H,), where § is the
surface normal.

During rotation the liquid is threaded by a lat-
tice of vortices whose equilibrium density equals
n,=2%/(k/2m,). At the angular velocities © ~1
rad/s employed, the intervortex distance is less
than the textural bending length &,. Hence the
additional free-energy term due to rotation may
be described by an averaged orientation of 7 (see
Gongadze, Gurgenishvili, and Kharadze?):

F, =%aM&; R;oH.), (1)

where the vortex parameter A is proportional to
n, and thus to Q.

The present measurements are performed on a
cylindrical sample of *He with radius 2=2.5 mm
and with the axis aligned with 2.% In Figs. 1 and
2 the frequency shifts of the measured NMR ab-
sorption peaks are presented as functions of re-
duced temperature. Typical NMR signals illustrat-

ing the appropriate absorption peaks are also
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FIG. 1. The lowest three spin-wave resonance fre-
quencies measured at 29.3 bars in the stationary state
(right-hand side) and during rotation at € = 1.40 rad/ s
(left-hand side): _open circles, B parallel with SZ
closed circles, H antiparallel with SZ solid lines are
the calculated eigenfrequencies. The inset illustrates
the measured NMR absorption spectrum at 7 /T, =0.51.

shown. The shift Ay from the Larmor frequency
v, is given in terms of the Leggett frequency v %,
The pressure in these measurements is 29,3
bars and T, is 2.72 mK.

Two outstanding features are common to Figs.
1 and 2: (1) In the rotating state there occurs a
jump at 7=0.67, in the magnitude of the frequen-
cy shift, which implies a discontinuity in the vor-
tex free energy F,. This phenomenon represents
a first-order phase transition in the structure of
the vortex core since it displays the properties
expected of a transition associated with each in-
dividual vortex, but not of the vortex lattice as a
whole.! The transition temperature is pressure
dependent and runs almost parallel with the A-B
phase boundary. (2) The NMR frequency shift de-
pends on the directions of rotation and magnetic
field: The same net effect results by reversing
Hor $. The symmetry of this gyromagnetic fre-
quency shift is described by a textural free energy
term, which is odd in € and f—f,

Fgm:éak(ﬁi RiaHtx)’ (2)
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FIG. 2. The frequency shift of the NMR absorption
peak in a tilted magnetic field, measured at Q@ =1.40
rad/s. The angle pu between § and H is quoted. The
open and filled symbols represent forward and reverse
rotation, repsectively. For u = 25° and 155°, the di-
rections of & and H are shown by the arrows. The
NMR signals in the inset were measured at 7/7,= 0.53
with u = 25°.

proposed by Volovik and Mineev,® The gyromag-
netic frequency shift also displays a discontinuity
at the vortex-core transition, as is apparent
from Figs. 1 and 2. We conclude that both F, and
F,, depend on the detailed structure of the vortex
core,

In Fig. 1 the NMR frequency shifts correspond
to a series of absorption maxima separated by
roughly equal spacing. These peaks are reso-
nances due to the excitation of spin waves local-
ized on the axially symmetric “flare-out” tex-
ture. 2

The flare-out texture is found by numerical
minimization of the textural free energy with
appropriate boundary conditions for the # vector.
Then the spin-wave spectrum is solved and com-
pared to the experimental result.® The calculated
frequency of the second eigenmode in the station-
ary state is first adjusted by varying the magnetic
bending length £,. The only other parameter in-
volved is the dipolar coherence length £, which
sets the length scale in the spin-wave equation.
The results for the stationary state are shown in
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Fig. 1 on the right-hand side as-solid lines, In
the temperature interval of our data the &, ob-
tained by the fitting procedure is well approximat-
ed by &, =0.67[¢/(1 -0.91¢)]> mm where e=1

- T/T,. The deviations of the measured and cal-
culated spin-wave spectra are attributed to the
fact that a fixed estimated value £, =10 um was
used.

The values of A and x which were found by fit-
ting the spin-wave spectrum for the rotating case
are shown in Fig, 3 as solid lines. Both xand «
are proportional to .

These parameters can also be derived from
measurements of the frequency shifts in a mag-
netic field tilted with respect to £.? The data in
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FIG. 3. The normalized vortex and gyromagnetic
parameters A/Q [Eq. (1)] and x/QH [Eq. (2)] in s/rad.
The solid lines correspond to the calculated spin-wave
eigenfrequencies shown in Fig. 1, with error bars in-
dicated for k. For T/T, >0.6, k is so small that it
cannot be resolved from the spin-wave analysis. The
open data points represent tilted field measurements
of Fig. 2 after use of Eq. (3) to convert the frequency
shifts to values of A and «. The different symbols re-
fer to separate experiments with the parameters as
quoted; filled symbols indicate measurements as a
function of Q at constant 7.
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Fig. 2 represent the overall shift of the main ab-
sorption peak (cf., the inset) which arises from

a reorientation of the # texture in the bulk liquid
during rotation. The normalized NMR shift equals
sin®g, which in the bulk is found by minimizing
the energy terms F=F, + F, + F,,, neglecting
finite-size effects., This leads to the following
condition on the # orientation®:

2 _ 1
A [u cos2p + (l—u_u%)lg sian]

+£[cos + “ sin ]—1 (3)
H M (1—1,42)172 mu| =1,

where u is the t11t1ng angle of the magnetic field
H with respect to £ and u=1 —%sin®S. By use of
this expression the data of Fig. 2 have been con-
verted to values of A and «; the results are
shown in Fig. 3.

Referring to Fig. 3, where the data obtained at
different field orientations lie approximately on
a single curve for A/Q, we conclude that neglect~
ing the boundary effect is not crucial, especially
for T close to T,, where £y <R

Here we suggest an explanation for these gyro-
magnetic phenomena: In the Ginzburg-Landau
approach the gyromagnetic term [Eq. (2)] may be
ascribed to the properties of both the bulk liquid
and the vortices, i.e., k= kPUk+ goore,

The vortex contribution to F,, is a consequence
of an intrinsic magnetic moment which is concen-
trated inside the vortex core, where the order
parameter is nonunitary. The possible nonunitary
nature of vortices in a *P, paired superfluid state,
which may exist inside neutron stars, has recent-
ly been discussed by Sauls, Stein, and Serene.”
Simple symmetry arguments which use the rela-
tive spin-orbital symmetry breaking show that
nonunitarity also takes place inside the cores of
vortices in the B phase, producing a magnetic-
moment density ~(A%/e)(x,/y %), analogously to
neutron stars.” Here y, is the magnetic suscepti-
bility of normal *He, € is the *He Fermi energy,
and y is the gyromagnetic ratio of a 3He nucleus.
Multiplying this by the cross-sectional area of
the core S ~w&?, where & ~7%v /A denotes the co-
herence length, one obtains for the magnitude of
the magnetic moment per unit length |M |~ ~ X h/
ym,. If the vortex is axially symmetric, MV is
directed along R;, 2, where Z is the axis of the
vortex, i.e., in this case 2= . Thus the gyromag -
netic energy due to the vortices with density »,
is F,,°¢=—-n,M, -H; accordingly, k¢ ~ ~X 5/
va, which is of the same order of magnitude as
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the experimental data for «.

The bulk-liquid contribution to the gyromagnetic
energy® is due to the orbital momentum of Cooper
pairs.®? This momentum results from the rigidity
of the quantum state for the Cooper pairs, which
in the B phase is the elgenstate of the generalized
total momentym J gLi +R,0‘S(x with zero eigen-
value, Here L and S are the angular and spin mo-
mentum operators. In an applied magnetic field
a spin density of Cooper pairs §? = (x?/»)H (x*
the pair spin susceptibility) is induced which
leads to the pair orbital momentum den51ty L; ?
== (x?/v)R;q Hy.® This term ensures that J re-
mains zero and yields under rotation the gyromag-
netic energy F,*=- L? -§ with kL=5x*Q /4ay.
However, one may show® that this effect reduces
to a surface effect rather than a bulk one. This
feature reflects a fundamental property of the
pair orbital momentum in superfluid He. As a
result of the large overlap of the Cooper pairs,
whose size « £ is much larger than the inter-
atomic spacing b, , b/£~T,/€g, their motion
with the orbital angular momentum L? essential-
ly transforms to the center-of-mass motion of
the pairs on the surface of the container; this has
no orientational effect in the bulk liquid. Only a
tiny fraction of the orbital momentum L =(b/
£)?L.? is associated with the intrinsic rotation of
the Cooper pairs and is responsible for the bulk-
energy term — § +L.1° Thus k*"*~(T_ /e )2x*Q/
ya and may be neglected in comparison with
Kcore.u

We have presented the first observation of
gyromagnetism in an anisotropic superfluid,
which strongly supports the conclusion that a
spontaneous magnetic moment'? is concentrated
in-the cores of quantized vortex lines in 3He-B,
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