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Characteristic Lengths in the Wavy Vortex State of Taylor-Couette Flow
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The wavy vortex state of Taylor flow has been examined with use of a novel linear opti-
cal scanning apparatus which allows the wavy vortex flow to be studied in considerable
detail: Measurements of the wavy mode amplitude and pair-size distribution show that
characteristic lengths scale with the size of the apparatus.

PACS numbers: 47.20.+m, 47.25.-c

There has been increasing interest recently in
studying the wavy vortex state in Couette flow.'™
This effect is interesting because it is a more
complicated instability than Taylor vortex flow,
evolves from it at slightly higher Reynolds num-
ber, yet is close enough to the Taylor vortex
state that one believes progress can be made in
understanding the behavior of the flow with rela-
tively simple mathematical models.®> Coles first
characterized this flow by means of the number
of vortex pairs N in the flow and the number of
waves m around the annulus.! As the Reynolds
number R increases beyond the onset for the
wavy mode R, it is found that the time-averaged
pair spacing becomes nonuniform through the
flow® and that N can change spontaneously by de-
struction or creation of new pairs. A mechanism
for this change was proposed by Ahlers, Cannell,
and Lerma?® and a different mechanism was re-
cently proposed by Park and Crawford.®

The pair-size distribution reported by Ahlers,
Cannell, and Lerma® shows a variation of pair
size over a rather long length scale. This ob-
servation has stimulated Brand and Cross® to
advance dynamical equations for wavy vortex flow
with solutions containing a penetration depth or a
healing length of the order of 10 times the gap
size d. We have assembled a 256-channel optical
scanning device which allows us to look at the
wavy flow with unprecedented precision. We re-
port here new measurements which show no evi-
dence for such a healing length; indeed it appears
that the operative characteristic length is the
total length L of the apparatus.

Our apparatus consists of cylinders of radii R;
=2.235 cm and R, =2.54 cm with aspect ratio T’
(= L/d) made variable by adjusting the position of
a nonrotating plug at the top of the flow. The
fluid consists of glycerol and water solutions with
kinematic viscosity v=4.99 ¢S at 20°C, with
Kalliroscope tracer added at a few percent by
volume, carefully adjusted to emphasize the loca-
tion of the inflowing pair boundaries. The out-

1352

flowing boundaries have a less stable optical sig-
nature and are out of phase with the inflowing
boundaries. Rotation rates Q are set by a pro-
grammable frequency synthesizer, the tempera-
ture monitored by a Hewlett-Packard model
2804A quartz thermometer, and reflected light
from the flow focused on a Fairchild CCD 111A
linear optical array. The output of the array is
digitized and stored on a flexible disk. Because
of speed limitations of our interface bus, we take
a 4-ms exposure of one axial slice of the flow
pattern and allow the pattern to rotate 342° be-
fore making the next exposure. We take forty
pictures of somewhat more than one vortex pair
in evenly spaced time intervals while the pattern
revolves 38 times. From these forty pictures,
by automated analysis, we obtain data such as
are shown in Fig. 1. These data can be fitted by
sinusoidal functions, and from these fits we can
accurately deduce the pair spacing and the ap-
parent wavy mode amplitudes. We move the ar-
ray downwards and repeat the process until we
have a high-resolution picture of the entire flow.
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FIG. 1. Locations of two adjacent-inward flowing
pair boundaries as a function of azimuthal position.
Forty pairs of data points and their least-squares fits
are shown.
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This procedure gives us an axial resolution of
0.005 cm and a dynamic range equivalent to
twelve-bit accuracy (as contrasted to four or six
bits for video scanners).

We show in Fig. 2 the pair-size distribution
for a flow at R=QR,d/v=159. (For our geometry,
Taylor vortex flow begins at R,=123, and wavy
flow at R,=140.) We see that the pair-size dis-
tribution has a minimum about 5 pairs of cells
from each end. These data were obtained by use
of a ramping rate a* =dR/dt* =0.1, where #*=1¢/
(Ld/v), N=33, and m=2." If a ramping rate of a*
=15 (150 times the quasistatic rate) is used to
traverse across R,,, a wavy mode with m =3
rather than 2 is produced in our apparatus. If a
wavy mode state with m =2 is first established
just above R, under the quasistatic criterion,
and is then ramped to a higher Reynolds number
state with a rapid acceleration, the m =2 mode
is retained, and a nonequilibrium pair-size dis-
tribution is obtained. This distribution relaxes
over a period of time to a distribution identical
to that obtained under the quasistatic procedure.
The relaxation time in this case is highly history
dependent. Figure 3 compares two such distribu-
tions at R =159 with N=33, where a*=0.1 in the
quasistatic case and a*=15 in the nonequilibrium
case. The nonequilibrium distribution has much
more scatter than the equilibrium and is also
quite flat in the central portion. This flatness
could be misinterpreted as suggesting the exis-
tence of a penetration length, when in fact it is
only an artifact of a nonequilibrium situation.

The question of the existence of a penetration
length cannot be settled by observations at a
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FIG. 2. Distribution of pair size in the cylinder for
R =159, N =33. The data in this figure have been
folded from z = 0. We have ascertained that under nor-
mal circumstances the distribution is symmetric about
the center. Because of the large amounts of data re-
quired to obtain each distribution, most runs cover
only two-thirds of the cylinder length.

single aspect ratio. We have, therefore, exam-
ined three aspect ratios, I' =30.89, 53.90, and
70.41. In order to extract characteristic lengths
from the data we have decomposed the pair-size
distribution as shown in Fig. 2 into the sum of a
Gaussian function in the main part of the cylinder,

a,=Aexp(-z2/0%), -L/2<z<L/2,

and a decaying exponential at each end of the cy-
linder,

a,=Bexp[~(L/2 - |z]|)/a]+C,

where A, B, C, a, and o are parameters of the
fit. We attach no theoretical significance to our
choices of the forms of @, and a,.

Our results show that a, is by far the dominant
term in the pair-size variation. Results for sev-
eral of our measurements are summarized in
Table I. Here, R=QR,d/v, and x2/n is the re-
duced chi-square goodness of fit, with » the num-
ber of degrees of freedom.® The data of Table I
show that o increases with L, and that o/L is a
constant within experimental error.

The determination of « is severely limited—it
can rest on as few as two points. The evidence,
poor as it is, tends to support the idea that a/L
is also a constant, but that result cannot be estab-
lished statistically beyond question.

The conclusion we wish to draw from this ex-
periment is that if the Reynolds number is ramped
sufficiently slowly to establish what Benjamin®
has called the primary flow (¢*=0.1 in this case),
the effects of the ends of the apparatus extend
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FIG. 3. Comparison of pair-size distributions for
“slow” (a*= 0.1) and “fast” (@*= 15) ramping (m = 2 in
both cases). Note that rapid ramping results in more
scatter in the data and a roughly uniform pair-size
distribution in the central region.
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TABLE I. Experimental data for three aspect ratios on the charac-
teristic length of the Gaussian pair-size distribution a;.

L (cm) T N R o (cm) o/L x/n
9.42 30.89 14 159+ 0.5 2.32+1.32 0.246+ 0.140 0.25
16.44 53.90 23 149+ 0.5 4.14+3.93 0.250+0.239 0.35
21.48 70.41 33 149+ 0.5 6.40+2.57 0.298+0.120 0.20
21.48 70.41 34 149+ 0.5 5.40+1.76 0.251+0.082 0.36
21.48 70.41 35 149+ 0.5 5.27+2.66 0.245+0.124 0.15

throughout the flow: There is no penetration or
healing length at each end of the flow with uni-
form pair spacing inside. Previously reported
experiments on nonwavy Taylor vortex flow point
to the same conclusion: (i) Experimental obser-
vations for Taylor vortices show that for the
range of lengths in which a state characterized by
N pairs is stable, the equilibrium pair size is
uniform throughout the cylinder (with the excep-
tion of one half-pair at each end).'® (ii) If the
plug position is changed inside this range, the
effect is felt throughout the length, and a differ-
ent uniform pair size is established when equilib-
rium is reached.’® (iii) The amount of time
needed to reach this equilibrium involves the en-
tire length L of the apparatus.!!

The situation which emerges from recent ex-
periments is clear. When the primary flow is set
up by ramping the Reynolds number quasistatical-
ly, the effects of the ends are felt throughout the
apparatus in both Taylor vortex and wavy vortex
flow. In wavy vortex flow we find no evidence for
a “healing length” of order 104 unless we ramp
too rapidly or are too close to a transition. The
necessity for quasistatic ramping requires an
inconceniently long experiment for an apparatus
of even quite modest aspect ratio. If one ramps
too quickly, the flow will be in the midst of a
transient relaxation (of perhaps quite long dura-
tion), and the results will not, in general, be
reproducible from one laboratory to another.
There is a growing suspicion that results will be
sensitive to the radius ratio R,/R, as well. These
rather unwelcome conclusions likely account for
the apparent conflicts in observations by differ-
ent investigators over the years, and may call
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for more realistic theories than have been devel-
oped to date.

We are grateful to Helmut Brand, Michael
Cross, Guenter Ahlers, Brooke Benjamin, and
David Cannell for preprints and helpful discus-
sions.

This research was supported by the National
Science Foundation Fluid Dynamics Program
under Grants No. MEA 81-17569 and No. MEA
82-08804.

'D. Coles, J. Fluid Mech. 21, 385 (1965).

’M. Gorman, H. L. Swinney, and D. A. Rand, Phys.
Rev. Lett. 46, 992 (1981).

3G. Ahlers, D. S. Cannell, and M. A. Dominguez
Lerma, Phys. Rev. Lett. 49, 368 (1982).

‘G. King and H. L. Swinney, Phys. Rev. A 27, 1240
(1983).

5H. Brand and M. C. Cross, Phys. Rev. A 27, 1237
(1983).

K. Park and G. L. Crawford, Phys. Rev. Lett. 50,
343 (1983).

"We defined the dimensionless ramping rate a* in
an earlier paper on Taylor vortex flow: K, Park, G. L.
Crawford, and R. J, Donnelly, Phys. Rev. Lett. 47,
1448 (1981), Note that we have not made a similar in-
vestigation for wavy vortex flow and use a* only as a
convenient dimensionless ramping rate.

8P. R. Bevington, Data Reduction and Evvor Analysis
for the Physical Sciences (McGraw-Hill, New York,
1969), p. 81.

9T. Brooke Benjamin, Proc. Roy. Soc. London, Ser.
A 359, 1, 27 (1978).

K. Park and R. J. Donnelly, Phys. Rev. A 24, 2277
(1981).
Upark, Crawford, and Donnelly, Ref. 7.



