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A Quid flows parallel to the strata of an n-layer stratified system. Particles suspended
in the fluid are carried along with the flow, and additionally make random jumps into
neighboring strata, where the flow velocity is different. The spatial dispersion of the
particles in the flow direction, for long times, is calculated exactly for arbitrary n, jump
rates, and velocity field. The result is applied to a variety of phenomena, e.g., chromato-
graphy, Taylor diffusion, and random. walks.

PACS numbers: 05.60.+w, 47.55.Hd

In this Letter, we present a versatile and wide-
ly applicable method for calculating the effective
diffusion coefficient for a system of particles
flowing in a layered system, the direction of flow
being perpendicular to the layer normals. The
model, and our solution of it, has a large num-
ber of different applications, e.g. , to chroma-
tography, to the problem of dispersion in porous
media, to Taylor diffusion, and to random-walk
problems themselves.

We consider a system of n layers or channels.
The layers are planar, parallel to the x-z plane.
In each layer i, i = 1, . . . , n, fluid is flowing in

!

the x direction with velocity u, . Particles sus-

pended in the fluid are carried along with the lo-
cal flow velocity. In addition, they perform a
random walk between the layers. The transition
rates for going from layer i to the adjacent lay-
ers i +1 and i —1 will be denoted by k and k;,
respectively. We consider here reflecting bound-
ary conditions, i.e. , k„':k1 0 for convenience,
we define k, ' =k„„=0. We will calculate the ex-
act longitudinal dispersion, (5x (f)& in the long-
time limit and then show the relevance of the re-
sult for the problems mentioned above.

The probability densities P(x, i, t) of observing
a suspended particle at the position x in layer i
at time t obey the following set of balance equa-
tions:

s, P(x, i, f) = (- Bu, /Bx —k, " —k; IP(x, i, f) +k;„P(x,i + l, t)+k;,+P(x, i —1,t ).

One may also consider the concentration c(x, i, t)
which is the probability P(X,i, t) times the (con-
stant) total number of particles. The quantity we
are interested in is the dispersion in the flow di-
rection x,

n

&&x'(&)& = 5 fdxb -(x(~)&1'P(x,i, &), (2)

where
n n

(x(t)& =5 f dxxP(x, i, t) =P p;(l).
i=1 i= 1

n

8,&ox'(&)& =2 P(p, (~) -(x(f)&P, (~)lu; (4)

where p;(f) is the probability of being in layer i
at time t irrespective of the horizontal position
x

P, (f) = f dxP'(x, i, t).

From (1) one easily obtains the following equation
for (ex'(i)&:
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The equation obeyed by P; (t) is obtained by inte-
grating Eq. (1) over x,

n

a, P, (t)=5 Z, ,P,.(i),

where the matrix E. is given by

(7)
Multiplication of (1) by x and subsequent integra-
tion over x yields the equation for p, (t),

n

e,p, (t)=+K,, p, (t)+u, .P, (t).
j=1

Equations (7) and (8) can be solved in terms of
the right and left eigenvectors, X;j and Yj;, cor-
responding to the eigenvalues, ~j, of the matrix
E. In particular, one known the eigenvector X,,
associated with X, = 0:

(8)

X],=I;"=Ãk, +k~+ ~ ~ - k],+k]+1 ~ - ~ k„,
where N is the normalization constant E,P, "
= 1). We suppose that the random walk being con-
sidered is irreducible; otherwise one would have
sets of layers which do not communicate with
each other and the problem would break up into
separable subproblems. Then one obtains the
following equation for the dispersion:

&,(5x'(t)) = —2 Q u;P, "u,.P,"G;,+B (1O)

The remaining problem is to obtain an explicit
expression for the Green's function. Fortunately,
this problem has been solved by Herrick' in quite
a different context (the distribution of electrons
over the manifold of excited states of an atom).
His method is easily adapted to our problem, al-
though the algebra is rather tedious. We only
quote the final result for the dispersion:

K —= lim(5x'(t))/2t

n 1 n l
= g[+ P (u, -u, )P, "P,")'/P, "k,'.

l=1 4=1 j=1
(12)

Note that the sum over l may be taken to include
l+n since this term is zero anyway.

Equation (12) is the fundamental result of this
Letter. In the remaining part, we illustrate how

it can be applied to various problems.

where B denotes terms decaying exponentially in
time, and |",j is the Green's function,

&ri ~rj
&~j= Z

For n = 2, the general expression (12) reduces
to the well known result for the dispersion of
pa, rticles on a chromatographic column. ' The
case n = 3, with u, =u, =0, corresponds to a chro-
matographic problem with two different types of
absorbates, represented by layer 1 and layer 3,
respectively. ' Layer 2 corresponds to the mobile
phase with velocity u, =u. The dispersion reads
(k, ' =k„k, =k,)

, k, k, (k, k,'+k, +(k, )

In the limit as k, -0 or k, '-0, one recovers,
of course, the n = 2 result. The case of n =4 can
be applied to the problem of an active absorbent
which can exist in two different forms in the mo-
bile phase. '

The result (12) can be simplified further when

applied to some typical problems occurring in
the problem of dispersion in stratified porous
media. In the limit that the adsorption-desorp-
tion equilibrium is established rapidly in each
layer, the flow velocities, u, , and the exchange
rates, k,. =k,.'=k;, depend on the layer index, i,
in the same way, since they have, as common
origin, the adsorption-desorption equilibrium in
that layer. Let us define p;, 0&p;&1, as the
fraction of nonadsorbed molecules in each layer.
It is also convenient to introduce r, = 1/p; and
r =Pr;/n. If k and u are the exchange rate and
flow velocity in the absence of adsorption (p,. =1),
then one has

k; =kp; =k/r;; u, =up; =u/r, .

From (12) and (14) one obtains

(14)

(15)

This simple exact result can be used for the cal-
culation of the long-time dispersion of both free
and adsorbed particles in porous stratified me-
dia, , instead of the phenomenological or numeri-
cal calculations used heretofore. ' Note that a re-
sult identical in form to (15) is obtained if one
assumes that the transition rates k,. are indepen-
dent of i.

In order to consider the continuum limit, we
introduce the thickness of a layer, q, a.nd the
vertical coordinate y =iq and define P(x, y, t)
=P (x, i, t)/g. Furthermore, we write

(16)
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We then take the limit n- ~, k;- ~, e; —~, and g- 0 in such a way that the products nest =L, kp' =D(y),
and e&)7 =u)(y) remain constant. In this limit, the set of equations (1) goes over into the equation

xp'(x, y, t) =I— — +—D(y) —y'(x, y, t),su (y) sv (y) 8

Bg By By By
(17a)

with reflecting boundary conditions

ss'(, y, t) =0 at y=0, y=I. .
By

We have introduced the flow velocity in the y direction,

v(y) =2u)(y) -D(y)/dy.

(17b)

Equation (17) describes the problem of Taylor diffusion' between two parallel reflecting plates with

u(y) the flow velocity of the fluid, v(y) the sedimentation velocity perpendicular to the boundary plates,
and D(y) the diffusion coefficient. By the limit procedure outlined above, we obtain for the correspond-
ing Taylor diffusion coefficient

a P

[fo'dy'fo"dy" fu(y') -u(y"))&"(y')&"(y")]'
&"(y)D(y)

(19)

with

Iy "(y) =Nexp[ f'dy'v(y')/D(y')], (20)

K = f dy( f dy'[u -u(y')]),

and K a normalization constant.
This general result can be shown to reduce to

results known from the literature in several par-
ticular cases. For example, in Taylor's original
problem, ' where v = 0 and D (y ) =D, independent
of y, Eq. (19) becomes

Here 9, „ is the discrete Heaviside function (0, „
=1 for l ~ r and zero otherwise). As far as we
know, the result (23) is new.

In a similar way, by taking u& = 5, „+5; „one
can obtain (5&„5v„.lt) We jus.t mention here the
result of (23) in the limit of large n and for the
simple case when all the transition rates are
equal to k,

(24)

with

u =—f' u(y') dy', (22)

which is easily shown to be equivalent to a previ-
ous result for K in terms of a series expansion. '
In the more general case v(y) =0, but arbitrary
D(y), (19) reduces to the result obtained by Bow-
den, ' following Taylor's original arguments.

For the particular case u, = t); „, one has x(t)
= T „, where T„ is the residence time in the rth
layer given a total elapsed time t. In this case,
Eq. (12) gives the exact long-time dispersion of
the residence time for a state in a general one-
dimensional random walk (or a birth and death
process) with reflecting boundary conditions,

(C~„'lt)
2t

n-Z

Hence (t)v„'lt) is independent of n for large n (for
a fixed fractional distance, r/n, in the chain).
Equation (24) is valid for n» 1, t »n/k.

In a subsequent paper, we shall give more de-
tails and further applications of the theory.
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