
VOLUME 51, NUMBER 14 PH YS ICAL REVIEW LETTERS 3 OcTQBER 1983

Conformation of Linear Polymers in Three Dimensions
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By significantly extending the existing exact enumeration results, and by combining
several independent analysis methods, the authors obtain accurate estimates of the lead-
ing "scaling" exponent and the amplitudes for the d=3 linear-polymer radius-of-gyration
problem. Specifically, they find that the mean square end-to-end distance of an N-step
self-avoiding walk on an fcc lattice is given by the expression ps -AN "ll +B/N +C/N]
with v=0.5875, g—= 0.470, A —= 1.05, B= —0.8/A—, and C —= 0.25.

PACS numbers: 64.60.Cn, 05.50.+q, 36.20, Ey, 61.40.Km

What is the shape of a long polymer molecule&
This question has intrigued the best minds for
many decades, and stimulated a variety of disci-
plines ranging from mathematics and physics to
chemistry and biology. It soon became clear that
the simp1. est model for the structure, assuming
the position of each successive link in the polymer
to be a random variabl. e, was unrealistical. ly sim-
ple. The chain must be enlarged simply because
of the fact that two links of the chain cannot be in
the same position of space. This "excluded-vol-
ume effect" is incorporated by describing the
chain not as a random walk but as a self-avoiding
walk, and an elegant formula was advanced by
Flory to describe the dependence of the rms ra-
dius of gyration R, on the polymerization index
N: R, -N", with v = 3/(d+ 2).'

The modern era of polymer statistics has been
characterized by a long-standing ambivalence'
concerning the domain of va1.idity of the Flory
formula; it works perfectly for d =1 and for d
~ 4, and recent1. y an argument has been advanced
to support the Flory prediction v=~4 for d=2.2

Thus it is tempting to expect that it works for d
= 3 also. Indeed experimental data are frequently
analyzed by assuming v = &» and this value is con-
sistent with most Monte Carlo ca1.culations. ' With
the advent of the renormalization group (RG),
there arose the possibility that v& ~5, and the most
accurate calculations ~ ' now suggest v = 0.5880
+ 0.0015. A subsequent analysis of some exPeri
mental data suggested that possibly v = 0.5860
+ 0.0040.' Nonethel. ess, what has traditionally
been the most accurate' method of scaling expo-
nent calculatioe —extrapolation from exact enum-
eratior~gives the Flory value. '

Our purpose here is to demonstrate cl.early that
v is significant1. y less than the Flory value for d
=3. To this end, we have accomplished the fol-
lowing two nontrivial. tasks: (a) We have extended
existing enumeration data significantly by calcu-

v = 0.5875+ 0.0015. (2)

As a by-product, we also obtain the first series
estimate of the amplitudes', 8, C.

Exact enumerations for the fcc lattice.—We fo-
cus attention on the c1ose-packed fcc lattice,
since oscillations due to the bvo-subl. attice struc-
ture are not present. However, the large coordin-
ation number (z = 12) means that at each succes-
sive order there are about 10 times as many
wal.ks as at the previous order. Roughly 85 h of
central-processing-unit time on an IBM 3081
computer were required to enumerate exactly the

11 176 064 704 412 and c12 = 1 7 1 55 071 068
walks of 11 and 12 steps, respectivel. y. We find
the results p11c11 1144305 206 478 and p„c„
=16 308699430 896. (Since almost 1000 h of com-
puter time woul. d be required to enumerate the
roughly 18&&10' walks with 13 steps, this calcu-

l.ating two nut terms for p„ for the fcc 1.attice,
representing roughly 100 times as much computer
time as previously expended on this problem, and
(b) we have combined a number of independent
extrapolation procedures, al, l of which incorporate
"corrections to sca1.ing," in an effort to isolate
the correct value of the leading scaling exponent
v. Here p„ is the mean square end-to-end dis-
tance of a self-avoiding walk (SAW) -a, random
walk with only the steric excluded-volume con-
straint that two monomers cannot be in the same
place. Asymptotically, p„scales in the same
fashion as R,', with the general form

p„=AN2'[1+a/N~+C/Nr+. ..]. (1)

Previous series work has negl. ected the presence
of the l.eading nonanalytic and analytic correction-
to-scaling terms 8/N and C/N. Our main re-
sult is that with careful incorporation of the cor-
rection terms, we can obtain an estimate of the
leading exponent that is of the same accuracy as
that obtained from RG calculations:
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lation was not attempted. Several checks were
carried out, based on recent exact results con-
cerning the end-point probability distribution. )

Analysis of extended series: the correlation
length exponent v.—The key problem is to esti-
mate the "true" value of v from the knowledge of
the first twelve values of p„. %e found that stan-
dard methods like Pade approximants and their
variations' do not work well because of the signi-
ficant influence of the correction-to-scaling
terms in (1). Fortunately, however, we shall
see that a delicate combination of different meth-
ods does produce consistent exponent estimates.
The main lesson that is illustrated by our anal, y-
sis is that reliance on only one or two methods
can produce results that are internally consistent
yet nonetheless are wrong. For example, we
show in Fig. 1(a) the predictions of three meth-
ods, I, II, and III; other methods frere used, but
these three gave the most reliable and consistent
results for all lattices and all cases studied.
Plotted as the top and bottom curves are the func-
tions
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To some extent, this method corresponds to tak-
ing successive intercepts of estimates of the sort

where the second equalities of (3a) and (Sb) follow
from substitution in (1). An eyeball fit to the
exact points suggests that possibly v =+ (see
arrow). However, we see from the form of (Sa)
and (3b) that if the correction-to-scaling exponent
6 satisfies 4&1, then the limiting slope is +
providing that the amplitude factor B is negative.
Thus the data for v, qf (N) must have a maximum.
We note in passing that this situation parallels
that of the d = 2 triangular lattice, "for which &
is positive so that both curves approach v with
slope -™and hence v, «'(N) has a minimum.

The third set of data shown are for method III,
which eliminates the 1/N analytic correction that
is present in both (Sa) and (Sb):
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FIG. 1. (a) The dependence on 1/N of the three se-
quences of successive approximations p &&(A) to the cor-
relation length exponent p for the fcc lattice SAW prob-
lem, Squares, Eq. (3a); triangles, Eq. (3b); and in-
verse triangles, Eq. (3c). (b) The sequence of "first
intercepts, " obtained by placing a straight-line segment
through successive pairs of points in (a). (c) The "sec-
ond intercepts. " The arrow denotes the Flory value v
=3=g o

1283



VOLUME 51, NUMBER 14 PHYSICAL REVIEW LETTERS 3 OCTOBER 1~)83

formed in methods I and II; therefore it is not
surprising that this method serves to extrapolate
the very small degree of curvature present in
curves I and II and therefore suggests tha, t I'&+.
Note that Ref. 8 calculates (3c) through order N
=10 but does not extrapolate the trend indicated
in Fig. 1(a), and hence concludes that v =&.

We now address the rather subtle question of
how to extrapolate the trends present in methods
I, II, and III. The essential point is that one
must choose the appropriate variable x to use as
the abscissa in order that the slight curvature is
minimized and reliable extrapolation can be
made.

All our definitions of v,qf(N) [e.g. , Eqs. (3a)-
(3c)] are of the form
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Our estimates of v „„,are based on forming a
sequence of intercepts of successive pairs of
points (called "first intercepts") and then plotting
these first intercepts against a suitable abscissa.
We then repeat the procedure and form an im-
proved sequence of estimates of v„„, (called
"second intercepts"). This procedure can be
continued until the points cease to be smoothly
behaved.

One must be prudent in choosing the abscissa,
since this choice will determine the curvature
of the resulting plot. For certain choices of the
abscissa, data obeying (4a) asymptotically should
become roughly linear, thereby enabling reliable
estimates to be made for v„„,. To see this, let
u=1/Ã, where 8 is a free parameter. Sub-
stituting in (4a), we find v, ff(u) vI +u
+u' . The first intercepts are then of the form

I(u) = v„„,+(1 —a/8)u ~ +(1 —1/8)u'I . (4b)

Two very useful choices are as follows: (i) 8

=1 [here (4b) predicts that the last term is zero,
and hence there is no maximum and the behavior
is monotonic; thus we plot the sequence I(u)
against u =N ], and (ii) 8=6, [here the sec-
ond term in (4b) is zero, so that we plot I(u)
against u' =1/N]. Both methods give compar-
able final estimates for v„„,.

As an example of the sort of plots that result,
we set 8=1 and show in Fig. 1(a) the functions
plotted against 1/N In Fig. 1.(b) the successive
intercepts are seen to be nonhorizontal, indicat-
ing that the original data have considerable curva-
ture. The intercepts extrapolate toward a value
of v considerably /orred than ~5, and on this basis
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we feel that we can exclude with some degree of
confidence the possibility that the Flory formula,
is correct for d=3. To obtain the most precise
estimate of v, we show in Fig. 1(c) the second
intercepts. Again, considerable regularity is

0.0 0.1 0.2 0.3 0.4 0.5
(1/N)' ~

FIG. 2. Sequences of estimates used to obtain the
amplitudes A and B. (a) The dependence on (1/Q t of
the function h~ ~spz. The limiting intercept of this
graph should be g, while the limiting slope should be

Accordingly, in (b) we show the first intercepts
(diamonds) and also the second intercepts (crosses),
while in (c) we show the slopes of line segments joining
successive pairs of points of (a). All graphs assume the
trial values p& =0.5875 and g& ——0.470; the reason for
the relatively large error bars quoted in the text is that
both p and B depend rather sensitively on both p& and

Ag.
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displayed. Successive estimates must approach
v„„with zero slope if plotted against 1/N.

The amplitudes A, B, and C in Eq. (1) were
obtained e~iatum. Firstly, we multiply both
sides of (1) by N '"', where v, is a trial value
of v. The left-hand side is then plotted against
1/N ~t, where a, is a trial value of b.. A plot
using the choice v, of (2) and b. , = 0.470' is shown
in Fig. 2(a). The amplitudes A and B are then
obtained from the intercept and slope, respective-
ly. By studying the dependence onN of the se-
quence of intercepts obtained by successive pairs
of points [Fig. 2(b)], we find A= 1.05+0.03. The
estimate B=—-0.30/A is similarly obtained by
studying the sequence of successive slopes [Fig.
2(c)]. Unbiased estimates of B may be obtained
by cal.culating the limiting slopes of Fig. 1(b).
Comparable final estimates are obtained. C can
be similarly obtained by changing the x axis of
Fig. 1(a) to 1/N, and Fig. 1(b) to 1/N. We find
C = 0.25 from the limiting slopes.

In summary, then, the situation for the d=3
SAW problem (the n =0 limit of the n vector-
model) is somewhat parallel to that for the n = 1
problem a few years ago, when series analysis
predicted y=+~ yet RG predicted a value roughly
1% lower. Largely through the careful and clever
efforts of Nickel and others, ' this discrepancy
was resolved: Analysis of extended series in-
corporating correction-to-scaling factors indi-
cated that the RG results are indeed correct. We
claim in this work to have successfully carried
out the analogous efforts for the n = 0 problem,

and again it appears that the RG results are cor-
rect. Thus the Flory formula, while correct for
the integer values d =1, 2, and 4, fails for the
most physically interesting case d =3.
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