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Magnetic Surface Waves in Plasmas
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The existence of a new type of surface wave in plasmas is demonstrated. These waves
are intimately connected with the self-generation of magnetic fields in the laser-plasma
interaction. The waves resemble waveguide modes in that a number of discrete modes
can exist. The modes are localized to within a collisionless skin depth of the surface and,
in the collisionless fluid limit, there is no restriction on the distance the waves can prop-
agate.

PACS numbers: 52.35.Hr, 52.35.Bj, 52.40.Fd, 52.40.Kh

Spontaneously generated magnetic fields in
laser-produced plasmas have been observed for
many years. ' ' These observations, along with
their obvious impact on the inertial-confinement
fusion program, have been the motivation for the
many papers that have appeared on the subject in
the last decade. ' ' Transport of energy along
surfaces, "anomalously fast plasma blowoff, '
and insulation of the laser-heated electrons from
the target interior" (known in the laser fusion
community as flux limitation) have all been
attributed to properties of self-generated mag-
netic fields. All these phenomena require sharp
discontinuities in plasma properties (e.g. , den-
sity, temperature, and atomic charge) for their
existence. Therefore, the understanding of the
normal surface modes in a plasma is crucial to
the understanding of these phenomena. In this
Letter, I demonstrate the existence of an en-
tirely new set of plasma surface modes. It will
be shown that (1) the self-generated magnetic
field plays an essential role in the propagation
of these waves; (2) a number of discrete modes
exist, as in a waveguide; (3) in the collisionless
fluid limit, there is no restriction on the distance
the waves can propagate; (4) the waves are local-
ized around the surface on scale lengths of the
order of a collisionless skin depth; and (5) the
phase and group velocities are very dependent
on the density and temperature profiles at the
surface. While this work has been motivated by
programmatic aspects of the inertial-confinement
fusion program, it is felt that the results are
quite general and applicable to any plasma that
contains sharp density and/or temperature grad
ients.

We choose a density profile similar to the one
illustrated in Fig. 1(a). In regions A and C we
require the density gradient scale lengths to be
large compared with the scale length of the den-
sity jump in region B We will .permit the den-

sity to vary in the x direction only. The ions are
assumed to be cold and fixed. Quasi charge
neutrality is also assumed. Collisions have been
neglected. The temperature profile is permitted
to be arbitrary and no heat flux is permitted.
We choose the magnetic field to lie in the z di-
rection and to vary only as a function of x, y,
and time. We will look for waves localized in x
around region B and propagating in the y direc-
tion. The equations for the electron hydrodynam-
ics are

7 ' 'tv = 0
~

—(p - Q) —Vx vx($ - 0) = -V x Vp, (2)
Bt mn

(b)

FIG. 1. (a) Density profile. The surface, region &,
separates region & from region C. (b) Density profile
for analytic solution. In region & the profile is nearly
flat.
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(3)

where e=3p/2=3nT/2. Here, m is the electron
mass, I is the density, v is the velocity, p is
the pressure, T is the temperature, c is the in-
ternal energy density, g= Vxv is the electron
vorticity, and A=eB/(mc) is the magnetic vor-
ticity. Equation (2) was obtained by taking the
curl of Euler's equation. In almost all the previ-
ous work on self-generated magnetic fields, 4"'
electron inertial effects, represented here by
the electron vorticity, have been neglected.
These effects must be included to obtain the
waves of this Letter. The inclusion of the ener-
gy equation, Eq. (3), is also necessary. The
flow of internal energy provides a solenoidal
pressure force which acts as the source of the
magnetic field in Eq. (2). Ampere's law is

A.,2VxQ =-v, (4)

where A., =c/&u~ is the collisionless skin depth
and ~~ is the local plasma frequency. Equations
(l)-(4), the curl of Eq. (4), and the assumption
of a,given fixed density profile provide a closed
set of equations for the unknowns v, T„g, a,nd
Q. If we linearize these equations about the tem-
perature profile T,(x) and assume a y and time
dependence of exp(-i&ut+iky), we obtain

(5)

where g is defined by ( =2k. ,'T,/3L, „'m, u ~ is
the phase velocity, a.nd L„=[ dl n(n) /dx] ' is the
density gradient scale length. The boundary con-
ditions for the surface waves are that Q vanishes

as !x! goes to infinity. Equation (5) will be rec-
ognized as the Sturm-Liouville equation" of
which the Schrodinger equation is a limiting
case. The problem of finding surface modes re-
duces to the problem of finding the eigenmode of
Eq. (5) for each eigenvalue, v~ '. In other words,
each eigenmode will have a different dispersion
relation which depends on the eigenvalue v~ '.

Equation (5) can be solved analytically if we
assume the density profile of Fig. 1(b). In re-
gions & and C the density gradient scale length
is taken to be infinite, forcing $ to zero. In
region B we require the density gradient scale
length to be much longer than A, , and a, but not
so large that 1 —$u~ '+O'A. , ' is greater than or
equal to zero. In region B, $ is taken to be con-
stant. The problem is now equivalent to the
problem of solving Schrodinger's equation in an
asymmetric square potential well. The bound
solutions correspond to surface waves. The num-
ber of surface modes will depend on the depth
and width of the "potential well. " In regions A.

and C one finds evanescent solutions decaying as
exp(q, x) and exp(-q, x), respectively. Here, q,
and q, are defined by q, =(A,, '+k')'i' and q,
=(A., '+k') '. The subscripts on the skin depths,
A., indicate the region to which they pertain. In
region B, one finds sinusoidal oscillations with
wave number q, =(g, ~~ '/A, ' —X, '-k')' ', where
$„ is the value of $ in region B One se. es that,
for small k, the waves are localized in x to with-
in a few skin depths of the surface. This is in
sharp contrast to most earlier work. 4 In order
to connect the solutions, one requires 0 and A.,20
to be continuous across the boundaries of the
regions. With this condition, one obtains the dis-
persion relation

cos(2q, a)X, 'q, (z, 'q. +x, 'q, ) +sin(2q, a)(x, 'q, x, 'q, -x, 'q, ') =0.
One can see by inspection that Eq. (6) only has a
solution when the magnitude of cos(2q, a) is
small. This occurs whenever the condition q, a
=(2j +1)~/4 is satisfied. Here, j is an integer
that varies from zero to infinity. We see that j
is the index for discrete surface modes corres-

!

ponding to the discrete bound states in the Schro-

! dinger problem. If we take q, a to be exactly
equal to (2j+l)v/4, then Eq. (6) can be simply
solved for the phase velocity of each mode, yield-
ing

2 n2 a2

m 16 A~'

where

2 y 2 g 2 2 g 2 g 2 g 2g 2

The temperature at the surface, the thickness of the surface, and the density gradient scale length at
the surface all play a significant role in determining the propagation speed. We see that when ka is
small, the waves are nondispersive. We also note that, for small k, higher modes travel at slower
speeds. It is important to note that, unlike the waves studied in Ref. 5, all the points on the wave front
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FIG. 2. Magnetic field profile. The solid line is for
a density profile of n, =1.75no, n& ——0.2nD, and n = 0.5no,
where no is an arbitrary density. The thickness, a, is
taken to be 1 Oc/c.uz, where ~z -4~ps /~.

travel with the same phase velocity, Eq. (7).
Thus, the distance that the waves can travle is
not limited by the curvature of the wave front, as
in that case. With the eigenvalues, Eqs. (7) and

(8), one can obtain the eigenmodes. Furthermore,
the phase velocities given by Eq. (7) of this Let-
ter and Eq (25) .of Ref. 5 are significantly differ-
ent. There is only agreement, for small j, in
the limit that a/hp is very large and ka is very
small. Figure 2 is the display of the fundamental
mode for a specific density profile. Profiles of
this nature have been observed both in particle
simulations' and experimentally. '

In conclusion, the existence of an entirely new

type of surface wave in plasmas has been demon-
strated. This wave shares many properties with
waveguide modes. It is expected that this new

wave will play a crucial role in the understand-
ing of surface energy transport, ' magnetic insu-
lation, "and energy decoupling in the laser-plas-
ma interaction. Additionally, the understanding
of how this surface wave couples to radiation will
provide a valuable diagnostic of the surface" as
well as possibly leading to a coherent ultraviolet
or soft x-ray light beam. "
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