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Fractal Dimension of Strange Attractors from Radius versus Size of Arbitrary Clusters
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A fractal dimension Dz of strange attractors is estimated as follows. Clusters of n

nearest-neighbor points are sampled from a time series; DJ;t is found from R D+'-n
where R is the average cluster's radius. The estimation of Dz~ is shown to be especial-
ly efficient for high dimensional systems.

PACS numbers: 47.25.-c, 02.50.+s, 52.35.Ra

Dissipative chemical systems often exhibit a
transition from regular to chaotic, i.e. , erratic
but still not entirely random, motion in phase
space. These transitions are due to the presence
of attractors in phase space, which are termed
"strange. " The fractal (or Hausdorff) dimen-
sion, ' D~, quantitatively measures this degree of
"strangeness. ""Classically, it is calculated as
follows. Consider a d-dimensional phase space
and let M (e) be the number of d-dimensional box-
es of side length e required to cover a set of N
points constituting the attractor. Then

M(~)-e D&, e —0, N —~.
The determination of the attractor's volume be-
comes increasingly difficult as the dimension of
the space increases. '

Alternative methods theref ore have focused on
the distribution of distances between the N points
on the attractor. Consider the set (X,), i =1,
. . . , N, obtained from a time series of N consecu-
tive measurements. Grassberger and Procaccia~
have calculated a correlation exponent v which is
related to the number of pairs of points at dis-
tance 1X, -X,. l less than e. The computation of v

in multidimensional space is considerably less
difficult since one deals with time series of N
points, not with the volume. However, v is re-
lated to the fractal dimension by v & D~. Time
series have been also used by Takens' to calcu-
late rigorously the limit capacity of strange Bt-
tractors, which is greater than or equal to the
fractal dimension.

In this Letter we utilize an alternative defini-
tion of fractal dimension, D&. , which shares the
above convenient feature of dealing with the points,
rather than with the volume. We choose arbi-
trary center points on the attractor and consider
clusters of increasing size (i.e. , number of points)
enclosing these centers. DJ, is then estimated
from the radius vs size dependence of these clus-
ters.

Let us return to the coverage of the attractor

with boxes, but define boxes containing a con-
stant number of points n, instead of a constant
volume as usual. This, for example, can be re-
alized as follows: The attractor is first divided
into elongated boxes of base R" ' and of height
spanning the entire attractor. The height is sub-
sequently divided to create boxes of variable
height, each containing precisely n points. A dif-
ficulty arises at the perimeter of the attractor
but this can be solved by discarding any box hav-
ing a height much greater than, say, that of the
preceding box. An analog of Eq. (1) for boxes of
constant n is

M(n)-R(n) ~', n/N-O, N

where R(n) constitutes the average box volume. '
Since M(n)n=N=const, Eq. (1') gives at once

(2)

Intuitively, we expect the two alternative defini-
tions of a fractal dimension, i.e. , D~ in Eq. (1)
or D~. in Eqs. (1') and (2), to be equivalent. Ad-
mittedly, it may turn out after all that the two
definitions are not strictly equivalent. In that
case, however, there does not appear to be any
a priori reason to prefer one over the other. In-
deed Mandelbrot' employs an expression similar
to Eq. (2) in order to discuss the fractal dimen-
sion of random walks. [There, R(n) is the (root
mean square) average displacement for n steps. ]
As we shall see, from the point of view of com-
putational ease, the definition employed here is
to be preferred for strange attractors.

The average R(n) can be estimated with great
ease with the help of a random sampling of clus-
ters of size n. The sampling has to be elaborat-
ed. Very often the fractal is nonuniform, i.e. ,
certain regions of the attractor have higher "sen-
iority" in the sense that they are visited more
often than others. In that case, however, the
number of boxes having n points each, within any
region of the attractor, is proportional to the
number of points inside that region. The correct
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sampling of R(n) is therefore automatically real-
ized by picking points at random out of the total
time series, calculating R(n) of the spheres con-
taining the g —1 nearest neighbors to these points,
and averaging R(n) over the sample. The sam-
pling of R (n) constitutes therefore a so-called
"weight average"' over clusters.

Our algorithm for calculating D~ from R (n)
thus proceeds as follows. Consider a set PX;},
i = 1, . . . , N, of points on an attractor, obtained
from a time series. A reference point X, is cho-
sen at random and all its (square) distances (X,
-X,)' with the N 1re-maining points are com-
puted. These distances are then sorted out in an
ascending series (R'(n, X&)], n = 1, . . . , N, with a
very efficient algorithm of the numerical algo-
rithms group library, which determines R'(n, X,)
as a function of n. The procedure is iterated
over other reference points X, and averages
R'(n) for a given n are taken. ' A few hundred
iterations, at most, suffice to observe the power
law, Eq. (2), in the limit R(n)-0, i.e. , for n«X.

Our calculation of D~. from Eq. (2), using the
weight average R'(n), has been tested for various
finite- and infinite-dimensional systems. A typi-
cal calculation for a time series of N = 45&& 10'
and a few hundred (say, 500) iterations for the
estimation of R'(n) took, depending on the model
studied, between 20 and 40 min of central-proc-
essor-unit time on an IBM 370/165 and a relative-
ly insignificant amount of memory. This is simi-
lar to the ease of estimating v in Ref. 4 and should
be contrasted with the huge difficulties associat-
ed with estimating DJ; with box-counting algo-
rithms.

Tests of our method were performed with three
different two-dimensional maps: the one origi-
nally studied by Henon" (X,+, = Y, +1—aX, ', Y;„
=bX„with a =1.4 and b =0.3), the one introduced
by Kaplan and Yorke' [X;+,=2X; (mod 1), Y;+,
= n Y; + cos4wX, with n = 0.2], and the one studied
by Zaslavskii" (X,„=[X,. + v(1+ p Y,. )+evp
x cos2pX,.] (mod 1), Y,.„=exp(- I') (Y,. + e cos2rX, ),
where p = [1—exp(- I")]/I' with I' = 3.0, s =0.3, and
v = 10'&& &4]. For the first two maps, we find ex-
cellent agreement with the power law of Eq. (2)
(see Fig. 1), and the corresponding values for
D~. (see Table I) reproduce those obtained —with
much more labor by box-counting algorithms.
The case of the Zaslavskii map seems to be ex-
ceptional. A calculation of v for that system4 did
not show a clear-cut power law and an (admitted-
ly poor) fit yielded v = 1.5. A similar phenomenon
seems to occur with box-counting algorithms and
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FIG. 1. Dependence of B(n) (or rather [R2(s)]'~;
see Ref. 8}on n for various attractors. R(s) is the
weight average (in arbitrary units) of the radius of a
hypersphere that encloses n+1 points on the attractor.
Line 1: Henon map (N= 25x10 ); line 2: Kaplan-Yorke
map (N= 25x 103); line 3: Zaslavskii map (A: N= 65
x 103; pe: N = 1& 10 ); line 4: Lorenz equations (N= 25
x 10 ); line 5: Rabinovitch-Fabrikant equations (N= 65
x ].03).

the value DJ,. = 1.38 found in Ref. 2 is subject to
caution. ' (The latter value, moreover, does not
satisfy the well-established bound4 v & D„.) A
study of the Zaslavskii map with the help of our
method clearly shows the presence of two power-
law regimes, depending on the range -of variation
of n (see Fig. 1, curve 3A), giving the two values
of D~ in Table I. An increase of the resolution,
obtained by taking N= 1&& 10', further confirms
this conclusion (see curve 3B). (Incidentally,
fitting the entire range by a single slope would
lead to Dz, = 1.67+ 0.27.)

Two three-dimensional systems have been al-
so considered: the I orenz" model (dX/dt =o(Y
-X), dY/dt = —Y-XZ+RX, dZ/dt =XY —bZ with
R =28, o =10, and b = x8), and the Rabinovitch-
Fabrikant" equations {dX/dt = Y(Z —1+X')+yX,
d Y/dt =X(3Z + 1 -X ) +y Y, dZ /dt = 2Z (a +XY)
with y =0.87 and a =1.1]. In both cases, our re-
sults agree with the power law (Fig. 1, curves 4
and 5) and the corresponding values for D~. re-
produce those obtained —with much more labor—by box-counting algorithms.

For higher-dimensional systems, the use of
box-counting algorithms is exceedingly difficult
and this is where our approach becomes most
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TABLE I. Correlation exponent p and fractal dimensionalities DF and DF for various
attractors. Results for DF and their standard deviations have been obtained by taking ten
values of the slope log[A(n)] vs log (n) over the region 1 ~n &N/10. Values followed by
an asterisk are those for the probabilistic dimension (Ref. 12), as obtained from the Kaplan-
Yorke (Ref. 3) conjecture.

Model
DF

[Eq. (1)]
DF

[&q. (2)l

Henon map
Kaplan- Yorke map
Z aslavskii map
Lorenz

equation
Rabinovich- Fabrikant

equation
Mackey- Glass

equations
T= 17
T= 23
y= 30
y= 100

1.21+ 0.01
1.42+ 0.02

= 1.5

2.05+ 0.01

2.19+0.01
1.95+ 0.03
2.42+ 0.05
2.8+ 0.3
7.5~ 0.2

1.26
1.43
1.38(t)'

[2.06~0.01 ]~

2.31
2.13+0.03'
2.76+ 0.06

[ 3.58+ 0.04'] ~

[ =10c1*

2.10~ 0.04

2.29+ 0.02
2.10+0.02
2.65+ 0.03
3.68+ 0.06
12.6+ 0.2

(d =10)
(d = 10)
(d = 10)
(d = 30)

1.26+ 0.01
1.43+ 0.01
1.22+ 0.02; 1.80+ 0.03

'Ref. 2.
bRef. 13.
'Ref. 14.

valuable. Thus, we have studied an "infinite"-
dimensional system represented by the delay dif-
ferential equation (dX(t )/dt =aX(t —w)/[1+X(t
—~)"]—bX(t) with a = 0.2 and b = 0.1]., introduced
by Mackey and Glass" as a model for the regen-
eration of blood cells in leukemia patients. For
the purpose of the numerical investigation, X(t)
over the interval [t, t —7] has been approximated
by p samples taken at intervals ht = w/(p —1) with

p =200-500. The d-dimensional vectors in the
time series were always chosen as X(t) = [X(t),
X(t +~),X(t +27), . . .X(t +d~)] with d»D~. Our re-
sults for the dependence of R(n) on n, for vari-
ous values of r, are presented in Fig. 2; r =17
corresponds to a system only slightly above
transition to chaos. All cases show a perfect
power-law behavior, even for very large r = 100
at which the attractor has a highly complex struc-
ture. Our value D~. =2.10+0.02 for v= 17 (see
Table I) agrees to within experimental accuracy
with that obtained for DF by Farmer. '~ At r = 23,
a slight discrepancy appears between the values
obtained with the two approaches, presumably be-
cause the box-counting algorithm of Ref. 14 uses
an embedding dimension d = 3 which is only slight-
ly higher than DF. For r = 30 and r = 100, DF be-
comes much larger than 3 and so does the mini-
mal embedding dimension. For that reason, use
of box-counting algorithms becomes impossible
and the values followed by an asterisk in the third
column of Table I are those for the probabilistic

dimension, "as obtained in Ref. 14 using the Kap-
lan and Yorke conjecture. ' Inspection of the table
shorvs that, for these large values of r, our DF.
results are slightly higher than those for the
probabilistic dimension. The v values, on the
other hand, are much lower and the discrepancy
between v and DF is seen to increase with v'.
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FIG. 2. Same as Fig. 1 for the Mackey-Glass equa-
tions. The lines are for 7. = 17 (N= 65' 103); y = 23 (N
= 45&&10') ~ 7-= 30 (N= 45x10') ~ and w= 100 (N= 45
x 103). The embedding dimensions are d = 10 for y= 17,
23, and 30; d = 30 for 7. = 100.
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To conclude, the numerical results presented
above support the contention that a fractal dimen-
sion D~. of chaotic systems can be indeed calcu-
lated with great ease by use of Eq. (2) and an
average R(n), estimated over a random sample
of points. Our approach should be particularly
useful in experimental situations which are typi-
cally of high dimension. The method might be
also useful for the estimation of a fractal dimen-
sion for other collections of discrete objects.
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