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Generalized Hugenholtz-Van Hove Theorem and a New Mass Relation for Finite Nuclei
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The usual Hugenholtz-Van Hove theorem for a Fermi system is extended to describe
asymmetric nuclear matter. It has been further developed to describe finite nuclei. It
is shown that this extended relation could be used as a basis for a new mass relation
which has both the liquid-drop and sir@le-particle features. Its success in predicting
masses of exotic neutron-rich nuclei is demonstrated.
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e =E/A. (2)

This theorem, being valid for any Fermi system,
is applicable to 'He and especially to nuclear
matter. In the past, this theorem has provided
useful guidelines in the development of Brueckner
theory. '

In this Letter, first we attempt to extend this
theorem to the asymmetric Fermi system and in
particular to asymmetric nuclear matter, an ex-
tension which we have not come across anywhere.
Then, using this extended HVH theorem as a
basis, we obtain a similar relation suitable for
finite nuclei. It is needless to emphasize the
usefulness of such a relation involving three ob-
servable quantities of a nucleus, namely, its
binding energy, and neutron and proton separa-
tion energies. Further, we demonstrate that
this relation ha.s a great potentiality as a ma. ss
relation in general, and can be used reliably to
predict masses far from the valley of stability.

The Hugenholtz-Van Hove (HVH) theorem' in
general deals with the single-particle properties
of a Fermi gas with interaction at the absolute
zero of temperature. It states that for a system
with number of particles A. and total energy E,

E B(E/W)
A p „ ~A „ '

where p is the number density. The derivatives
are taken at constant volume v. It has been
shown by Bethe' under Hartree-Fock approxi-
mation and also more rigorously by Hugenholtz
and Van Hove' that (BE/BA)„ is equal to the Fermi
energy & which is also the same as the separa-
tion energy with a negative sign. At equilibrium,
i.e. , at a density such that the pressure vanishes,
one obtains as a special case

Consider asymmetric nuclear matter with Z
protons and N neutrons. Let p be the number
density and E be the total ground-state energy.
The total energy E can be considered as a func-
tion of (N, Z) or (A, P), where A=N+Z and P
=(N —Z)/(N +Z), the asymmetry parameter. The
neutron and proton Fermi energies are, respec-
tively, e„=(BE/BN)„and e~ =(BE/BZ)„. Now

Thus from Eqs. (1) a.nd (3) we obtain

—+p =-,'[(1+p)e„+(1 —p)e, j .E B(E/X)

v

For a symmetric system, i.e., N =Z and also
where one kind of particle is present, Eq. (4)
reduces to the usual HVH equation (1). Thus Eq.
(4) can be called the generalized HVH theorem.
At equilibrium, i.e., for the ground state, the
pressure vanishes and Eq. (4) reduces to

The above relation is strictly true for asymmet-
ric nuclear matter. If we could incorporate the
surface, the Coulomb, and the pairing effects
into Eq. (5), we could hope to arrive at a rela-
tion applicable to finite nuclei. This is achieved
in the following way.

The total energy appearing in Eq. (5) can be
written as

E=E~ —a /'» ac Z'/~'I'+b(~ Z)

where E is the ground-state energy of the nu-
cleus with N neutrons and Z protons. The super-
script "E"denotes the finite nucleus, a, and a&
are surface and Coulomb coefficients, and 5(A,
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Z) is the pairing term. Then, using Eq. (6), the Fermi energies can also be expressed in terms of
their counterparts for the finite nuclei as

e„=e „~—a, [A2~' —(A —1)' '] —a cZ'[A ' ' —(A —1) ' ] + [ 5 (A, Z) - &(A —1, Z) ],
ep =

up
~ -a, [A~~3 —(A —1)2~~J —ac [Z2/A'~3 —(Z —1)2/(A —1)'~'J + [ 5(A, Z) —6(A —1, Z —1)].

Now with the help of Eqs. (6) and (7), the relation (5) reduces to

E~/A --,'[(1+P)~„~+(I—P)~, ~]=S(A, Z),

where

S(A Z) =a [A-" -A'~'+(A —I)'~']+a [Z'(1-A)A-~3+-,'(A —I)-~'{Z'(I+P)+(Z —1)'(1 —P)j J

+ 5 (A, Z) (1 —A ') ——,'(1 + P) 5(A —1, Z) —~(1 —P) 6(A —1, Z —1) .
It is worth mentioning here that the function S(A, Z) arises solely as a result of the finiteness of the
nucleus. For the pairing term, we have taken the standard function

+ &A ' ~ for even-even nuclei,
6(A, Z) = 0 for odd-A nuclei,

-AA ' ' for odd-odd nuclei,

(7)

(8)

where 4 is a parameter.
Thus Eq. (8) contains three parameters namely a„ac, and L. In order to see how well Eq. (8)

describes reality we took the experimental binding energies and neutron and proton separation ener-
gies of 277 nuclei ranging between Z = 10 and A = 20 to Z = 101 and A = 253 in the valley of stability and

performed a, least-squares fit with Eq. (8) to determine the three parameters. The values of the pa-
rameters so obtained are a, = 26.679 MeV, a& =0.827 MeV, and 4 =34.549 MeV which are close to the
standard values. The root mean square deviation was found to be 0.39 MeV. Figure 1 shows a histo-
gram of the deviation between the left-hand side and the right-hand side of Eq. (8) obtained in our fit.
This shows that relation (8) is fulfilled quite well throughout the Periodic Table.

Equation (8) can be used as a mass relation if we express the Fermi energies e„and e~ in terms
of the binding energies of the neighboring nuclei. Then Eq. (8) would read as

E (iV, Z)/A - -,
' [(I+P){Z~(X,Z) -Z (X- I, Z))+(I - P){Z'(X,Z) -E'(X, Z —1))]=S(A, Z).

The above equation describes a relation among
the masses of three neighboring nuclei with neu-
tron and proton numbers (N, Z), (N —1,Z), and

(N, Z —1) and hence can be considered as a mass
relation. It must be noted here that the above
mass relation is of hybrid nature having liquid-
drop features, represented through the coeff i-
cients a„ac, and 4, and single-particle fea-
tures like those of Garvey et al. ,

' represented
through the mass differences. The hybridiza-
tion of these two extreme models in nuclear
physics is expected to describe the nuclear prop-
erties better. To verify this, we have confronted
the model with a severe test of predicting the
binding energies of nuclei far from the valley of
stability. It has been mentioned earlier that we
have used the data of 277 nuclei lying in the valley
of stability in our least-squares fit. The fit rep-
resented through the histogram (Fig. 1) shows
the quality of the results for mass prediction in
that region. In general the error in the predic-
tion should be similar to the deviation presented

1244

! in Fig. 1. Now, using the same values of the pa-
rameters a„a&, and L, we predict the masses of
twenty neutron-rich nuclei in different regions
away from the valley of stability. The results
are presented in Table I. The data for low-mass
nuclei have been taken from Jelley et al .' and
for high-mass nuclei from the mass table com-
piled by Viola et al. ' These nuclei have been
classified into two groups: neutron rich and
ultra neutron rich. For both of these groups,
we have also presented the results of Garvey
et al. from their 1969 mass table, and those of
the droplet model' calculated by Myers. ' Our
mass relation uses two known masses and hence
to make the comparison with the predictions of
Garvey et al. more meaningful, we have chosen
twelve cases, under the group "neutron rich, "
which are close to the boundary of the experi-
mentally measured masses used by them in their
table. For the prediction of masses of such nu-
clei through the mass relation of Garvey et al. ,
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TABLE I. Predictions of binding energy for differ-
ent categories of nuclei. Z, N, and A are respectively
the proton, neutron, and mass number of the nucleus.
Columns 3-5 give, respectively, the differences be
tween the calculated and experimental binding energies
due to the present model, Garvey et a l. (Hef. 5) (GK),
and the droplet model calculated by Myers (My). The
last column gives the experimental binding energies.

U) 30

(3
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FIG. 1. Histogram of the differences between the
left-hand side and the right-hand side of Eq. (8) vs the
number of cases for 277 nuclei ranging from Z = 10
and A = 20 to Z = 101 and A = 253 in the valley of sta-
bility. For the values of the parameters, see the text.

at least two or more experimentally known mass-
es are used. ' In most cases our results are
closer to experiment than are those of Garvey
et a/. We g.so find that our discrepancies are in
general lower than those of the droplet model for
these .nuclei.

The group of eight nuclei presented under the
category "ultra neutron rich" are quite far from
the valley of stability. Our results are quite
close to experiment, the worst case being "At
which shows a discrepancy of 1.22 MeV. The
predictions of Garvey et al. and also of the drop-
let model are off by several megaelectronvolts
from experiment. In the case of the former,
such large discrepancies may be due to the ac-
cumulated errors resulting from extrapolation
to such far regions. However, in our case we
do not have such errors due to accumulation. If
we consider the fact that these two groups of
nuclei are away from the valley of stability and

have not been used in the least-squares fit, the
agreement of' the predicted masses with experi-
ment is indeed impressive.

rich

Ultra

Neutron-
rich

N=Z

odd-odd

and
Z)N
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We have also attempted to predict the masses
of some nuclei with N=Z odd and Z& N, which
also were not included in our least-squares fit.
For such nuclei, the mass relation of Garvey
et al. does not work, and that is why we have
compared our results only with those of the
droplet model in Table I. For N =Z odd-odd
nuclei our results compare well with those of
the predictions of the droplet model. However,
for Z & H nuclei our predictions are invariably
closer to experiment in most cases. From the

actuality of the agreement with experiment it ap-
pears that our model may be suitable even for
these classes of nuclei.

In conclusion we would like to emphasize that
the extended HVH theorem (4) obtained here is
quite general and useful. It has led to the inter-
esting relation Eq. (8) which relates three im-
portant properties of finite nuclei, namely, the
ground-state energy, and the neutron and pro-
ton separation energies. When treated as a
mass relation, its success with only three ad-
justable parameters is somewhat surprising.
Indeed it is more so as the parameters deter-
mined by fitting with normal nuclei work quite
well for the exotic ones. The main cause of its
success with a fewer number of parameters is
that the "energy differences, "which appear in
Eq. (9), cancel the other less important effects
like deformation, shell correction, etc. , to a
great extent. It has a unique feature that it
combines the two main important aspects of nu-
clear dynamics, namely, the liquid-drop and

single-particle aspects, and has its origin in the
many-body theory. The present study is by no
means complete; however, it is extensive enough
to establish the relation (8) and show clearly
that it has the potentiality of being used as a
mass relation. However, more work is needed
to construct a mass table on this basis, which
will be taken up later.
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