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Can the Velocity Autocorrelation Function Decay Exponentially?
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For Hermitian many-body systems, admissible functions for the velocity autocorrela-
tion function form a certain invariant of time. This property originates from a basic re-
currence relation. The exponentially decaying function cannot form an invariant and
therefore cannot be admissible.

PACS numbers: 05.30.-d

The velocity autocorrelation function (VAF) is
a key quantity in nonequilibrium statistical mech-
anics, from which basic transport properties
can be calculated. ' The VAF is defined as 'U(t)
=(v(t), v(0)), where v(t) denotes the velocity of
a particle at time t in a homogeneous fluid at
some fixed temperature and the inner product
means the Kubo scalar product. In the high-
temperature or classical limit, the inner pro-
duct may be replaced by (v(t)v(0)) where the
angular brackets denote an appropriate ensemble
average. The self-diffusion constant D is ob-
tained from the VAF by the following well-known
relation in some suitable units,

D= J dt'U(t).

Given a microscopic model, one can in principle
obtain the velocity time evolution v(t), and
hence 'U(t) and D, by solving the Heisenberg
equation of motion or the generalized Langevin
equation. ' To do so is a very difficult task.
Rarely does one in fact know the VAF from first
principles. In practice one usually assumes that
it has an exponential form g(t) - exp(-yt), where

y is a nonnegative constant, e.g. , the friction co-
efficient. ' The exponentially decaying form
yields the famous Einstein relation &@=const
for a fixed temperature. The recovery of the
Einstein relation appears to provide an added
measure of sanction for the use of this form for
the VAF.

For t-0 the exponential form does not meet
the well recognized condition d0(0)/dt = 0. That
is, the VAF must have zero initial slope. 4 For
t —~ the exponential form does not appear to
violate any known conditions. Hence, it is gen-
erally believed that, for long times, the exponen-
tial form is still valid or appropriate. ' ' Its
Fourier transform (the I orentzian), for example,
is widely used in semiphenomenological spectral
studies of fluids, magnets, and other systems.
In dynamical critical phenomena the notion of
slowing down is intimately linked to the Lorentz-
ian shape of the scattering function. ' " It is for

4„„a„„(t)= -h, (t) +a„,(t), v &0, (2)

where a, = 0, a„=da„/dt, and A„=(f„,f„)/(f, „f„,) with +-=1. Observe that h„represents the
relative norm or length of f, to f„„which are
a pair of adjacent basis vectors of the space S.
This entire set of lengths completely defines the
geometry of the realized Hilbert space (e.g. ,
dimensionality, shape). The lengths are model
dependent. I shall term 6, the vth ~ecu~~ant.
The general form of a, depends sensitively on the
behavior of the rt currants as a function of v. The
recurants themselves (through their characteris-
tic properties) are coupled to time explicitly.
Also, an admissible set of functions for (a,j
must realize a recurrence relation which is
congruent to the above RR [Eq. (2)]. Hence if,
for example, an admissible function for a, is
known, a complete set of functions for fa„& can
be found by the RR.

From the Hermitian property of L, we must

this reason that long-time tails in the VAF [i.e.,
'V(t)-t ", 0&k&~ and t —~ j first observed in
computer experiments came as such a surprise. "

It is possible to test whether the VAF can be
exponentially decaying at any time. Let H denote
the Hamiltonian of our system, which may be a
fluid or magnet. H is assumed to be Hermitian.
Let A. be a dynamical variable at E=o, also
Hermitian, which may be the velocity of a par-
ticle (tagged or untagged) or the total spin at
some fixed wave vector. The time evolution of A
is given by A(t) = (expiLt)A, where LA = [H, A].
Recently I showed that A(t) has solutions in the
form'

A(t)= 5 a.(t)f. , (1)
V=O

where jf „& is a set of orthogonalized basis vec-
tors which span the Hilbert space of A, denoted
by S. In this space, (a, f is a set of real, linear-
ly independent functions of time. These functions
satisfy the initial condition a,(0) = 1 and a, (0) = 0
if v & 1. They are related by the following re-
currence relation (RR):
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have (A(t), A(t))/(A, A) =1 for any t. Hence, it
follows that

That is, the length of the vector A(t) in tl is an
invariant of time. ' This property is useful for
testing whether a particular set of functions is
an admissible set. I et a, be a trial function,
forming a trial set (a„j via the RR. To be admis-
sible, i.e., a, =a„ for every v ~0, the trial set
must form the above invariant.

If A represents the velocity, then by definition
a,(t) is the VAF. We can immediately test
whether the exponential form for the VAF is
admissible. Let a,(t) =exp(-yt). By the RR, we
obtain a„(t) = u„exp(-yt), for every v ~ 1, where
u„ is a coefficient, u, = 1, u, = y/b, „u,= (1+y '/
6,)/Q, etc. These trial functions are not linear-
ly independent and the recurrants are not coupled
to time. Furthermore,

A(t)= Qa„(t)f„=( Qu„f„)exp(- yt).
v =0

(4)

The trial functions cannot form an invariant. I
therefore conclude that the exponential form can-
not represent the VAF."

We shall now obtain further implications of the
exponential function. The time evolution of A can
be regarded as caused by its generalized random
force S(t)." I have shown that'

&(t)= Z b( )ft„
V =].

where (b,} is a set of real, linearly independent
functions of time. In particular, b, is the mem-
ory function which appears in the kernel of the

!
generalized Langevin equation for v(t}." These

memory functions, referring to (b„) collectively,
satisfy the initial condition b, (0) =1 and b„(0)=0
if v ~ 2. They also satisfy the RR [Eq. (2)] with
& ~1 and b0-=0, hence without the first recurrant.
The generalized random force 6(t) belongs to a
linear manifold of 3. In this subspace, the length
of 6'(t) is also an invariant of time. ' I have furth-
er shown that'

b „(z)=a, (z)/a, (z), v ~ 1, (6)

a,(z) =

Z+ ~ a o

Hence ao(t) can be obtained by applying W ',

where a„(z)= [a„(t)], where is the Laplace
transform operator. Our trial function a,(t)
=exp(- yt) directly yields b, (t) =u, b(t). Hence,
if the VAF is an exponential function, the mem-
ory functions must necessarily be delta functions.
Also from (6), we have

a„(t)= j dt'b, (t- t')a, (t'), v~ l. (7)

Hence if the memory functions are delta functions,
the trial VAF functions la„) cannot be linearly
independent and their form cannot sensitively de-
pend on the recurrants.

The initial condition for la„)and the RR are suf-
ficient to establish the boundary conditions at the
origin (i.e., t=0) for the VAF." From b,a, (t)
= —a,(t), b, ,a,(t) = —a, (t)+a,(t), etc , we .obtain
a,(0)=0, a,(0) = —6„&0, a,(0)=0, 'a', (0) =b, (4,
+ 6,) & 0, etc. All odd derivatives vanish at the
origin. These boundary conditions were original-
ly obtained from linear response theory. 4 The
short-time behavior of the VAF ean also be estab-
lished. Using the RB, I have shown that'

a,(t) =1 —a, t'/2!+ a, (a, + t, )t'/4! —a, [(a, + a, )'+ t,n, ] t'/6!

+ a, [(w, +~,}'+a,~,(z, + n.,)+t,t, (~, +a, + a, + a,)]t'/6!. . . .
The coefficient of t4 was first given by Nijboer
and Bahman" in their work of slowneutron scat-
tering in classical fluids.

The condition by which exp(- yt) was excluded
from the class of admissible functions for the
VAF is the Hermiticity of our Hamiltonian H. To
our Hamiltonian H of many-body interaction ener-
gies, we now add a coupled non-Hermitian term
k (e.g. , dissipative, coupled to the reservoir).
If the dynamics of this enlarged system O'= H+h
is describable by an exponentially decaying func-
tion, then dynamically H'-h. For example, the

friction coefficient y is a property of k and not re-
l.ated to the recurrants of H. The VAF for non-
Hermitian systems need not satisfy the boundary
condition at the origin imposed by the Hermiticity
of II. This explains why an exponentially decaying
function, in spite of its inability to meet the
boundary conditions at the origin, can still realize
the Einstein relation. "

There have been a number of attempts to cal-
culate the transport coefficients of apparently
dissipative systems by using the recurrants of II.
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A standard practice is to approximate the mem-
ory function by a three-pole function. This kind
of approximation is equivalent to representing the
VAF by an exponentially decaying function. Hence,
the three-pole phenomenology may not be mean-
ingful if one is attempting to relate the transport
coefficients to the collective or many-body terms
of a.""

Finally, the class of admissible functions for
the VAF includes the Gaussian, the cylindrical
and spherical Bessel functions, and some others
related to them. ' Some of these functions can be
physically realized by certain Hermitian systems
such as the spin van der Waals model, " the elec-
tron gas models, "and the linear chain of nearest-
neighbor-coupled harmonic oscillators. ""
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