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Novel Superuniversal Behavior of a Random-Walk Model
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A model of interactirg random walks is proposed in which each new site visited has a
w'eight factor p. For 1&p&~, the model interpolates between purely random walks and
self-avoiding walks. When 0&p & 1, the model describes attracting random walks {and
also noninteracting random walks on a lattice with static traps), and shares some of the
intriguing features of random walks on percolation fractals~. g, dimension-independent
exponents.

PACS numbers; 05.40.+j, 05.60.+w, 64.60.Kw, 66.30.-h

Random walks have been employed to model
linear polymers and diffusion in randomly porous
media. ' ' It is becoming clear that the basic
scaling laws of these two systems are fundamen-
tally different from those for purely noninteract-
ing random walks, and much effort has been di-
rected to discovering how these laws are modi-
fied. For polymers, repulsive correlations have
been introduced to model the "excluded-volume"
effect. ' For the porous-media problem, much
recent work has focused on examples where the
medium in question is itself a random fractal,
such as the incipient infinite cluster at the perco-
lation threshold. ' ' lt seems that certain physi-
cal laws are hyperuniversal —i.e., dimension in-
dependent-- but the elucidation of these remark-
able phenomena has been hampered because nu-
merical studies thus far are limited to two and
three dimensions. '

In this Letter, we propose a model of corre-
lated random walks that displays some of the
intriguing features of diffusion on random frac-
tals such as percolation clusters, and also de-
scribes polymer chains with eithe~ repulsion or
attraction. The model is parametrized by a
weight factor p for each new site that the random
walker visits, so that a random walk that has

au gN walks
(1a)

where z is the lattice coordination number, Al-
ternatively, we may write

N+ j.
Z(N, p)= g c(X, s)p'

8=2

p
n+1 Q c(N s)ps+1 +s

s =2
(1b)

where c(N, s) is the number of N-step walks that
visit s sites. The second equality of (1b) indi-
cates that an equivalent formulation of our model
is that the weight of each self-intersection is p
This is in contrast to the Domb-Joyce model of
self -interacting polymer chains. '

The special case p =1 [K=O] corresponds to
the purely random walk where Z(N, K=O) =z .
If p & 1 [K& 0], walks that visit a new site at
each step are weighted most heavily and the walk

visited s distinct sites has a statistical weight of
p' -=exp(-Ks). One may regard K as a (dimen-
sionless) "energy" or "coupling constant" for
the random walker to find a new site. According-
ly, one may introduce a "partition function" for
all random walks of N steps,
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is self-repelling {Fig. 1). As p-~, the term
c(N, N+1) dominates in Eq. (1b) and we recover
the number of self-avoiding walks of N steps.

The regime p(1 [K)0] corresponds to a walk-
er which prefers to return to previously visited
sites. This defines a "self -attracting" random
walk, a situation which has received little study
thus far. As we shall show below, aspects of our
model are identical to properties of diffusion on
a lattice with randomly distributed, perfectly
absorbing static "traps" at concentration 1 —p. '
Here we present calculations which indicate that
certain critical properties of attracting walks at
p =p, are hyperuniversal .hat is, dimension in-
dependent. This is reminiscent of recent intrigu-
ing observations of Alexander and Orbach' for
diffusion at the percolation threshold, although
diffusion on percolation clusters corresponds to
a situation where the impurities are "barriers"
rather than traps. Finally, there is a connection
between our model and that of diffusion in a ran-
dom potential.

Our conclusions are based on examining sever-
al physical quantities: {i) The mean number of
sites visited,

(@N, p)) = Z .P'/ Z P'
walks wal ks

=(-9/8 lnp) lnZ(N, p) .
Equation (2) may be extended to the higher mo-
ments, (S(N, p)'), by taking/ derivatives with
respect to the parameter -K = lnp, and thus one

may calculate any statistical property charac-

terizing the distribution of sites occupied by an
interacting random walk. (ii) The probability of
return to the origin,

P.(N, p) = Z' p'/ Z p'
wal ks w alks

where the primed sum is restricted to walks that
return to the origin. (iii) The mean square dis-placementt,

{R(N,p)') = Q [R(walk)]'p'/ Q p', (4)
walks walks

Z(1,p) = 4p'. (5a)

The second step can continue in the same direc-
tion as the first step, or it may make a 90 turn.
Both of these cases lead to three sites being
visited. However, if the second step makes a
180 turn, then only two sites are visted, leading
to

where [R(walk)]' denotes the end-to-end distance
squared of a given walk; higher moments of the
displacement may be defined straightforwardly.
The behavior of Z(N, p), {$(N,p) ' ), {R(N,p)" ),
and P,(N, p) has not been studied for interacting
walks, except for the special case of self-avoid-
ing walks.

To calculate these quantities we use enumera-
tion methods as well as Monte Carlo simulations.
By the former method, we have exactly calcu-
lated properties up to a given number of steps
determined by limitations of computer time, for
arbitrary values of both p and spatial dimension
d. The results behave sufficiently smoothly with
N that extrapolation to N = is generally possible.
Moreover, we confirmed from the Monte Carlo
simulation that the trends established for small
N continue to larger ¹

To illustrate the enumeration, consider the
square lattice. The first step of a random walk
can occur in any of four directions so that

Pc Z(2, p) =12p'+4p'. (5b)
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FIG. 1. Phase diagram for the interacting-walk
model, showing three typical paths that probe the N

~ critical behavior. The case p = 1 corresponds to
noninteracting random walks, the range 0&p & 1 to
self-attracting walks, and the range 1&p &~ to self-
repelling walks (with the special case p = ~ being the
self-avoiding walk). For p & 1, we interpret the param-
eter p = e + to be the probability of a site being occcu-
pied, and our model is related to diffusion in a random
environment.

We have continued this procedure to higher
order and calculated Z(N, p) through order N =10
valid for all spatial dimensions. We have also
computed even longer "series" for d=l, 2, 3,
and 4 to order %=30, 16, 13, and 11, respective-
ly, and to order 13 for the triangular lattice. We
also calculated the mean number of sites visited,
the return probability, and the mean square dis-
placement. These series data were also ex-
tended up to N =104 in d = 1, 2, and 3 by a Monte
Carlo procedure that generalizes to the attract-
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ing case the inverse sampling method' introduced
for self-avoiding walks. From the analysis of
our data, we find several intriguing results,
which we shall now describe briefly.

(i) Z(N, p).—We calculated the growth param-
eter, or connective constant, defined by A(p)
=—lim„„N ' lnZ(N, p), for a number of values
of p in the range 0 &p &~. For the hypercubic
lattices, A(p) =2d when p=1. However, we find
that at the percolation threshold of each lattice,
p, (d), A(p, ) = 3.4 independent of d [Fig. 2(a)].
This striking result suggests that at p„ the con-
nectivity of the underlying structure on which the
random walk is taking place is dimension inde-
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FIG. 2. (a) Exact results for lnZ QV, P) at the respec-
tive percolation thresholds, p, (d), for hypercubic
lattices in d = 2 (squares), 3 (crosses), 4 (diamonds),
5 (asterisks), and 6 (hexagons). The data for different
d become asymptotically par allel, suggesting that the
growth parameters A, (p,) are identical for all d. (b) Ex-
act results for lu(S(N, p)) (upper) and In[(S~) —(S)~I
(lower). The slope of straight lines that fit the data
are roughly F and $, respectively, for all d.

pendent. '
(ii) (S(N, p)').—We calculated the moments

(S(N, p)') for the hypercubic lattices at p, . At
this point, we find (S(N, p) ') -N"' with n =—0.6
for 1 d ~10. For the square lattice, Monte
Carlo data for N up to 10' confirm the trend indi-
cated by the enumeration results. Our estimate
for u agrees with the prediction u =+ for diffu-
sion on percolation clusters at the percolation
threshold. ' Interestingly, the data for (S(N, p))
for all the hypercubic lattices lie on essentially
the same locus of points when p =p, [Fig. 2(b)].
This again suggests that certain features of dif-
fusion at p, are dimension independent.

(iii) (R(N, p)").—For the repelling case (p ) 1),
the mean square displacement crosses over from
purely random-walk behavior for small N to self-
avoiding walk behavior for larger N, as expected
by scaling. This crossover should occur for 1
-d&4, and we have explicitly observed the ef-
fect in one dimension. In the attracting case,
the situation seems to be more subtle and more
interesting. For both two and three dimensions,
the mean square displacement appears to satu-
rate at a finite value when p =p, and also for
values of p)p, . Further work on this subject is
in progress. In one dimension, however, the
mean square displacement is an increasing func-
tion for all values of p studied (0.05&p 1).

In light of the resemblance of our result (ii) for
attracting walks at p, with those predicted for
random walks on percolation clusters, it is
worthwhile to discuss the nature of the relation-
ship between the two models. Diffusion on per-
colation clusters is defined by a quenched aver-
age: First, a random cluster is generated, and
then an average over many random walks on this
cluster is taken. Finally, the average over all
clusters is performed, Our interacting-walk
model for p &1 also resembles diffusion in a
random environment, but in an annealed average
sense. Each new site visited causes an addition-
al factor of p to be associated with the walk.
This factor may be regarded as the probability
that the site is occupied when an average over
the walk and the random environment is per:-
formed simultaneously.

However, it is possible to show that this an-
nealed average corresponds to an actual quenched
average in a model of diffusion with impurity
sites being randomly distributed traps. In this
case, the quantity Z(N, p) gives the average num-
ber of random walks which "survive" to N steps
when the trap concentration is 1 -p. To see this,
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we present the following argument. " Let k~({Aj)
be the number of walks that survive to N steps
out of the ensemble of all (2d) random walks, on
a fixed configuration of traps {A). Then the av-
erage number of walks that survive to N steps is

(u„) = a„({Aj)P({A)),
~

~all confiy.

where P({Aj ) is the probability of the configura-
tion {A), and QP({A))=1. We may rewrite Eq.
(6) as

(2a )&

(n,) = g g P({A)), (7)
)'=1

where the first sum is over all (2d) walks y of
N steps, and the prime on the second sum indi-
cates that only those configurations in which the
walk survives are included. Clearly, this sec-
ond sum equals p'~~~, where s(y) is the number
of distinct sites visited by walk y. Upon sum-
ming over all (2d)~ walks, we obtain the function
Z(N, p) as defined in Eq. (1), thus demonstrating
the equivalence of the partition function of the
attracting walk with the survival probability for
random walks on a lattice with static traps.
This rigorous connection does not extend, how-
ever, to related quantities such as (S(N, p)),
P,(N, p), a,nd (ft(N, p)').

In conclusion, we have introduced a new model
that is of interest because it interpolates between
self-avoiding walks and random walks for p & I,
and because it displays intriguing hyperuniversal
behavior of p =p, (d). Our model exemplifies
physical features of the static trap problem, '
and also of the X~ ferromagnet with a random
quenched "pinning field. ""
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