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Competing Criticality of Short- and Infinite-Range Interactions on the Cayley Tree
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The Ising model, with equivalent-neighbor and nearest-neighbor interactions of Cayley-
tree connectivity, is solved exactly. Breaking translational symmetry by turning on the
Cayley interactions is analogous to lowering spatial dimensionality in Bravais lattices.
A range of classical criticality, a point of logarithmic corrections, a range of continuous-
ly varying power-law singularities, and a point of exponential singularity are successive-
ly encountered.

PACS numbers: 75.10.Hk, 05.70.Jk, 64.60.Cn, 64.60.Fr

The study of competing short-range and long-
range interactions is relevant to a variety of prob-
lems in statistical mechanics. This paper exam-
ines the Ising model on a Cayley tree subject to
nearest-neighbor (short-range) and equivalent-
neighbor (infinite-range) interactions. The model
is solved exactly by the Hamiltonian minimization
method, ' and phase diagrams and critical expo-
nents are obtained. The critical behavior is sensi-
tive to a delicate balance of the competing influ-
ences of the two types of interactions. On Bravais
lattices, any weak equivalent-neighbor interac-
tion changes the nature of the transition from
Ising to classical. "By contrast, in the Cayley
tree, applying the infinite-range interaction re-
sults in a nonuniversal line of phase transitions.
In this case increasing the strength of the nearest-
neighbor interaction decreases the translational.
invariance of the spins, and is found to have ef-
fects similar to lowering of spatial dimensionality.
This is reminiscent of dimensioral reduction in
a random magnetic field, ~ which is also a system
with broken translational symmetry. We also
speculate on nonclassical corrections to scaling
above the upper critical dimensionality.

Cayley trees are hierarchical lattices, ' quite
generally characterized by the absence of trans-
lational symmetry. ' For this reason Kaufman
and Griffiths' have suggested that studies of mod-
els on hierarchical lattices can contribute to the
understanding of low-symmetry systems such as
surfaces and random magnets. It is important to
note, however, that the translational symmetry
is broken in a special manner, which can be
called hierarchical as it is related to the genera-
tional structure of this type of lattice. This is
different from the breaking of translational sym-
metry in Bravais lattices which is usually due to
defects. The advantage of models on hierarchical
lattices is that they are exactly solvable' and can
provide insights into the behavior of more com-
plex systems on Bravais lattices. For instance,

frustrated hierarchical lattices have been em-
ployed to model spin-glasses, ' and numerous
models in solid-state physics' and statistical
mechanics' "have been studied on Cayley trees.

The competition between nearest-neighbor and
equivalent-neighbor interactions on the Cayley
tree can also be regarded as a competition be-
tween interactions that preserve translational
invariance and interactions which break it. In
the absence of nearest-neighbor coupling all
spins are equivalent. This "translational invari-
ance" is broken by the nearest-neighbor interac-
tions that place spins in the hierarchical struc-
ture of the Cayley tree. The free energy of our
model is related to that of the Ising model with
nearest-neighbor interactions only, in a magnetic
field. " Although the latter free energy becomes
a nonanalytic function of the magnetic field below
the Bethe-Peierls transition temperature, there
is no spontaneous magnetization except at zero
temperature. In the presence of equivalent-neigh-
bor interactions, however, there is ordering at
finite temperature. The disordering transition
has a variety of theoretically interesting critical
behaviors. As the strength of the nearest-neigh-
bor coupling is increased, the nature of the phase
transition changes from classical to behavior
similar to a system at its upper critical dimen-
sionality. Then, there is a nonclassical line,
with exponents varying with the couplings, that
terminates at a special point with a behavior sim-
ilar to a system at its lower critical dimensional-
ity. Thus, increasing the nearest-neighbor inter-
action (and thus reducing translational invariance),
appears to have on the critical behavior effects
similar to lowering the spatial dimensionality.
Another system lacking translational symmetry
for which dimensional reduction has been pre-
dicted' is a magnet in random fields.

We study a system of Ising spins 0,. =+1, on the
sites i of a Cayley tree of coordination number z,
with both short-range and infinite-range interac-
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tions. The Hamiltonian is

. -X J
Q (7; 0'g + K Q G ~ U~,

8 i, j (ij&

where Ãis the total number of spins. The first
summation involves all pairs of spins irrespec-
tive of their separation, while the second sum-
rnation is over nearest neighbors only. We con-
sider only the ferromagnetic case (J, K~O).

For &=0, the Hamiltonian describes the equiv-
alent-neighbor Ising model, which has a classical
(mean-field) phase transition at J = l." In this
model all spins are equivalent and the system
can be regarded as being translationally invari-
ant. When & is nonzero, the spins are no longer
equivalent as they are placed in the hierarchical
structure of the Cayley tree. For J =0, Eq. (1)
describes the Ising model on the Cayley tree with
nearest-neighbor interactions only, which has
been studied extensively io-i6 The Bethe-Peierls
approximation is exact for spins in the interior
of the Cayley tree, "and thus a classical phase
transition is predicted. However, the free energy

at zero magnetic field is analytic at all tempera-
tures. " This apparent contradiction is due to the
unusual structure of the Cayley tree, in that a
finite fraction of spins is located on the surface
of the tree. The free energy in a magnetic field
h, calculated by Muller-Hartmann and Zittartz, "
is an analytic function of K and h at temperatures
above the Bethe-Peierls transition temperature.
Below this temperature the free energy is a non-
analytic function of the field h as h goes to zero.
The leading nonanalytic behavior for &0' QBp
=tanh '[1/(z —1)] is f,(K, h) -!h!~, where the ex-
ponent A varies with K as b, (K) =ln(z -1)/ln[(z
—1)tanhK]. This nonuniversal behavior can be
understood by thinking of the Cayley tree as a
hierarchical lattice with noniterated bonds. ' When
b, (K) is an even integer, a(K, )=2m, with m=1,
2, .. . , the free energy has a logarthmic singular-
ity f,(K, h) -!h!' In(1/!h!).

The Hamiltonian in (1) with both J and K non-
zero has been studied on Bravais lattices, ' and
the same Hamiltonian minimization method' can
be applied to the Cayley tree. The partition func-
tion Z can be rewritten with use of Gaussian in-
tegrals as

1/'3
NJ, NJm'z=
~

dm g exp —
~

+zmgv, . +re+ rr, v,. !.(,) i =& (ii&

Ignoring terms of order lnN/N in the exponent
gives

Z=e ~f =f dm exp(-N[&Jm'+f0(K, Jm))), (2)

where f,(K, Jm) is the free energy per spin of the
Cayley tree with nearest-neighbor interactions
K, and subject to a magnetic field h= Jm. In the
thermodynamic limit N- ~, applying the saddle-
point method to Eq. (2) gives the free energy f as

f(K, J) = min[-', Jm'-'+ f,(K, Jm)]

The value of m minimizing this expression is the
net magnetization of the system, ' and will be de-
noted rn.

For small enough values of the couplings J and
K; the system is disordered and g(m) =-', J'm"

+f,(K, Jm} is minimized for m=0. For large val-
ues of couplings, the system develops a spontan-
eous magnetization. This is indicated by P(m)
achieving its absolute minumum for m c0. For
continuous transitions, the phase boundary sep-
arating the disordered and ordered states is ob-
tained by the usual requirement that g(m) should
be marginally convex at m =0, i.e.,

d'q(m)/dm-'!. , = J- J'g, (K) =0,

!where y, = —s f,/sh !„,is the zero-field suscep-
tibility of the short-range model. " The critical
boundary [Fig. 1(a)] is given by

1 —(z —1)tanh'K
(1+tanhK)'

0, K~ R~,

where tanhK, =1/(z —I)'~'. Close to the critical
line the magnetization m is small and it is suf-
ficient to approximate g(m) by an expansion in
powers of m. The critical line can be divided in-
to the following segments:

(i) For K&K))p=tanh '[1/(z- 1)], the free en-
ergy f, is an analytic function of h, and the ex-
pansion of g(m) will also be analytic. The phase
transitions in this ease are classical with p =&
and a =0 (discontinuity).

(ii) For KBP & K & K, = tanh '[1/(z —l)~~4], f, and
hence P(m) are nonanalytic (A & 4). However, the
leading nonanalytic behavior in g(m} occurs for
a power larger than 4 and P(m) ean be expanded
as

((m) =f,(z, o) ~ ~' (
—-z m'-*- —,y, a'm',
Xz
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system at its upper critical dimensionality, "
where the classical critical behavior (a =0, p
=&) is modified by logarithmic corrections.

(iv) For K, & K & K, the singularity in f, is strong

enough (2 & ~ & 4) to modify the critical exponents
completely. The expansion is now

with A a negative quantity. " Minimizing g(m)
gives the critical exponents in 8'f/9 J' -t and
rn-f sas a=-(4 —a)/(z-2) and p =(a —2) '.
Therefore, this segment is a nonuniversal line of
critical points with continuously varying exponents
(0&o. & —~, g&p &~).

(v) As K-K„ the susceptibility y, diverges,
and for K= K, the appropriate expansion for g(m}
is

FIG. l. (a) Phase diagram with equivalent- and near-
est-neighbor interactions J,K on the Cayley tree with z
=3 (inset). The critical line is composed of segments
of classical criticality (dashed line), classical leading
singularities and nonclassical corrections to scaling
(dotted line), and continuously varying exponents (solid
line). (b) Exponents ~ (solid line) and p (dashed line)
vs the coupling K.

where y, = —s'f, /ah'~„„ the fourth-order sus-
ceptibility, is a negative quantity' "which in-
sures the existence of finite minima. Minimizing
g(m) still leads to classical exponents, but there
will be nonclassical singularities in higher-order
derivatives of the free energy.

(iii) As K-K, the fourth-order susceptibility X,
diverges" as (K, —K) '. At K=K„ the expansion
for P(m) is

Jy 1,, 4 1

where 54 is a negative constant. ""For t= J
—1/y, negative the magnetization m is zero,
while for positive f, it behaves as m- it/lnt~'~'.
The thermal response function is no longer dis-
continuous, but has a singularity: s'f/s J' - 1/
ln(t). This critical behavior is reminiscent of a
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where

[(z 1}|/2+1]~
b2= & 0.

(z —1)ln(z —1)

As J-0 the magnetization m and s'f/s J' behave
as m -exp[- (2b, J) '] and S'f/SJ'-exp[-(b, J) '].
This exponential singularity of thermodynamic
quantities is typical of systems at their lower
critical dimensionality, such as the one-dimen-
sional Ising model" or the two-dimensional XF
model. "

(vi) For K& K„a is smaller than 2, and g(m)
=f0(K, O)-AJ m +-,' Jm'. The system is mag-
netized; however, as J -0 the magnetization goes
to zero as Js, while 8'f/s O' -J ". The exponents
o. and p are now given by n =(4- 3b, )/(2 —6) and

p = (6 —1)/(2 —~). For large enough K (~ &&),
becomes positive indicating a divergence in s'f/
8O'. The amplitude A. is equal to a constant plus
a numerically small periodic function of ln J~m ~,

"
which slightly modifies the power-law behaviors
of m and s'f/BJ'. The exponents o. and p [Fig.
1(b)] are related by n +P2=1, implying that y re-
tains its classical value of unity.

We observe that as the coupling g is increased
from zero the nature of the phase transition
initially remains classical until a critical value
(K= K,) where logarithmic corrections appear
similar to behavior at an upper critical dimen-
sionality. As & is further increased the critical
behavior is nonclassical power law, until another
critical value (K= K, ) where the exponential singu-
larities resemble those of a system at its lower
critical dimensionality. Thus increasing the coup-
ling K (and breaking the equivalence between the
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spins) appears to be the same as lowering the di-
rnensionality of the system. On the basis of this
analogy, me can also speculate that above the up-
per critical dimension the leading classical be-
havior is accompanied by nonclassical singulari-
ties of higher-order response functions, similar
to Qgp & Q & K4. It is interesting that dimensional
reduction is predicted in spin systems with ran-
dom magnetic fields which are also characterized
by broken translational invariance. Potts and
percolation models on Cayley trees with infinite-
range interactions exhibit dimensional reduction
and mill be discussed in forthcoming papers.
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