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Direct Determination of the Probability Distribution for the Spin-Glass Order Parameter
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The recent interpretation of Parisi’s order-parameter function g(x) in terms of a
probability distribution for the overlap between magnetizations in different phases is in-
vestigated by Monte Carlo computer simulation for the infinite-range Ising spin-glass
model. The main features of the solution for ¢ (x) are reproduced, in particular g (x) < x
as x—~0and q’'(x) = 0 at ¢=q .4, the largest value. Finite-size effects prevent one from
establishing with certainty whether there is a “plateau,” i.e., ¢’ (x) = 0 for a range of x.

PACS numbers: 75.30.Kz, 05.50.+q, 64.60.Cn, 75.10.Hk

The replica technique used to be a great mys-
tery when applied in situations® where it was nec-
essary to “break replica symmetry.” It has been
applied particularly to the infinite-range Ising
spin-glass model of Sherrington and Kirkpatrick®
(SK) and the most interesting results have been
obtained by Parisi.® In his theory replica-sym-
metry breaking shows up as an order-parameter
function g (x) for 0<x < 1. Recently, however,
the replica technique has become much better un-
derstood following the observation® that statisti-
cal-mechanics expectation values are obtained by
integrals over x; e.g.,

q=U8)s*),= [ qbc)dx
q(2)=<(sl_sj>:,2>,=folqz(x)dx @#7),

where S; =+ 1 is an Ising spin, i=1,... ,N, {...)p
denotes a statistical-mechanics average for a
given set of interactions, and (...), is an aver-
age over interactions. Subsequently it was shown®
that one can interpret not just integrals over x
but ¢ (x) for any particular value of x. The main
ingredient in the argument is that the SK model
can exist in one of many phases, which are stable
for N—-«, If one defines the magnetization of site
i when the system is in phase s by m;® and ¢,
the overlap between magnetizations, by

1 X

@y s (2)

(1)

then the derivative of the inverse function, i.e.,
dx/dg, turns out to be a probability distribution
for overlap between magnetizations of solutions,
i.e.,
dx '
o =W@)=(3; P(s)P(s)0(@** —q),, (3)
q s, s’

where P(s) is the Boltzmann weight* associated
with solution s. In particular, changing the inte-
gration variable in Eq. (1) from x to g, one finds
that ¢ and ¢ ‘® are just the first two moments of
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the distribution W(g), namely,

q=[a'Wla')q', ¢'®=[q*W(g)dq'. @)

Recently,® both ¢ and ¢‘® have been calculated
by computer simulations at a fixed temperature
below the transition temperature 7', for several
sizes and the results appear to extrapolate to
Parisi’s values for N—«. However, a much
more dramatic test of the theory would be to re-
produce the entire distribution W(g). This Letter
describes numerical simulations of W(g) for sev-
eral finite sizes which do indeed reproduce many
of the features of Parisi’s function g (x). Before
giving the numerical data it is necessary to de-
scribe what Parisi’s equations give for W(g).

Rather than plot ¢ (x) against x, as is convention-
al, I sketch in Fig. 1 the inverse function x(g),
since W(qg) is just the derivative of this. Above
the de Almeida—~Thouless” (AT) line there is only
one phase, the SK solution is correct, and x(g)
is a unit step function at ¢ =g g« the SK value, so
that

Wig)=6( —qs). (5)

For h -0, on the other hand, Parisi’s theory pre-
dicts®® that x(g) has a smooth part, starting at
the origin and ending at x =¥, ¢ =¢,,,,, at which
point there is step to x =1, so that

Wig)=Wig)+(1-%)86(g =g a0, (6)

where W(y) is the smooth part of the distribution
and has weight ¥. Since x g as g~ 0, then W(y)
is finite as ¢ = 0. Obviously W(g) is zero for ¢
>qmax *

Next I discuss the numerical simulations. The
Hamiltonian is given by
H=-73%; J,;8;S5,-17;S;, (7
(i, §) i

where the J;; are Gaussian random variables with
zero mean and variance®® J/(N-1), and % is a
uniform field. For N-—« there is a transition in
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FIG. 1. The solid lines are sketches of the function
x(g) from Parisi’s theory. In (a), the dashed curve
is similar to Parisi’s results but with the vertical
piece rounded out. The numerical simulations on
moderate sizes cannot distinguish between these pos-
sibilities. In (b), &.(7) is the critical de Almeida—
Thouless field and ¢ g is the SK value for the spin-
glass order parameter.

zero field at T,=J. It is useful to simulate at the
same time two independent samples with the same
interactions and field. These two samples are
simulated up to a time ¢,, to equilibrate, before
any averaging is done. It is necessary that ¢, is
longer than the longest relaxation time,' 7, which
diverges when N~ «, However, previous work'*
has obtained the relaxation times at T =0.4T,, h
=0, and so we shall concentrate on this point in
the 2-T plane and make sure that ¢, is large
enough for each size.

For ¢ >t, one then calculates

QU= 3 8.0 1152y D), ®
i=1

where the superscripts 1 and 2 on S; refer to the
two identical samples. The distribution of @ (¢)
is independent of ¢ and is obtained from

T
W)= (7 T 0 - QN ) . ©)

With use of an integral representation of the delta
function it is straightforward to show that for N
— o the distribution is the same as that in Eq. (3).

Furthermore, standard statistical arguments pre-
dict that if the system exists in just a single
phase then, for a large finite system, W(g) is a
Gaussian distribution of width of order N™ 2,
which of course goes over to the delta function of
Eq. (5) in the thermodynamic limit.

Above the AT line I find precisely this Gaussian
behavior, showing that there is only one phase
available to the system. By contrast the results
for W(lgl) at =0, T =0.4T,, shown in Fig. 2,
have a peak at large lg| but also a long tail ex-
tending to lg| =0 with a finite weight there. Since
the model has time-reversal symmetry W(q) is
symmetric'® and so I plot the distribution against
lgl. Consider first of all the small-g region in
more detail. All sizes show a finite value for
W(0) with no sign of this vanishing for N—«, In
fact, there is some suggestion of an upturn in the
curve as lg! -0 for larger sizes though this is not
really outside the statistical errors. Interesting-
ly, it appears that the solution of Parisi’s theory
does have such an upturn.® Since a direct solu-
tion of Parisi’s equations is very complicated,
in order to compare the numerical data with the
theory I have used the scaling Ansatz of Ref. 8
that q(x,T)=F(x/T) for x< X to determine g (x).
The only extra information needed is g, (T). I
use the approximate formula

o) =1 2(%)2 . <T£)3 (10)

¢

which correctly gives the first three terms in the
expansion®® about T =T, and correctly gives a T?
dependence at low temperatures. The resulting
prediction for W(g) is shown by the dotted line in
Fig. 2. The upturn at low ¢ is more pronounced
than in the numerical results.

Next let us look at the region of the peak in
W(g). The peak position shifts to smaller ¢ val-
ues as N increases, consistent with the value
0.744, from Eq. (10), for N—«, although reliable
extrapolation is not possible because of uncer-
tainties in the data and because the form of the
leading size correction is not known. The peak
also becomes narrower as N increases, particu-
larly on the high-g side, indicating that W(g) is
strictly zero for ¢ bigger than some ¢, when
N- o, However, on the low-q side of the peak
the results appear to differ more and more from
the approximate analytic solution of Parisi’s
equations (shown by the dotted line) as N increas-
es. This could indicate that W(g) diverges as ¢q
= max, OF in other words, dq/dx -0 as q —q .
Such a possibility would occur, for instance, if
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FIG. 2. W(|q|) for T =0.4T,, h=0. Some typical error bars are shown. The data clearly indicate a tail in
w(lg|) extending down to ¢ = 0, which corresponds to the existence of many phases some of which have zero overlap
between their magnetizations. There is also clear evidence that for N— « a divergence in W(lql|) occurs at a maxi-
mum value, g max, beyond which W(q) is zero. The dotted line is obtained from a scaling Ansatz for Parisi’s equa-
tions, as described in the text. There is a delta function of weight -é at ¢ =¢ max= 0.744 and a continuous part

which has a pronounced upturn as g —0.

dq/dx is only zero at x =1, i.e., the “plateau” in
g (x) is rounded out, as shown by the dashed line
in Fig. 1(a). Another possibility is that a plateau
region in ¢ (x) does occur but that the rest of the
curve joins the plateau region with zero slope.

It should be pointed out, though, that the position
of the peak is also shifting with increasing N and
this may account for the data for larger sizes de-
viating more from the dotted line in Fig. 2. It is
possible that for much larger sizes, where the
shift in the peak becomes negligible, one would
see the numerical results approaching the ana-
lytic theory. One cannot really distinguish be-
tween these various possibilities from the avail-
able data.

To conclude, I have shown that many features
of Parisi’s order-parameter function are repro-
duced by the simulations, in particular, g (x)cx
as x—~0and ¢’ (x)=0 at ¢ =¢ .. Parisi’s theory
is therefore at least an excellent approximation
to the solution of the SK model and may well be
the exact solution. It would help comparison with
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numerical data if accurate solutions for the func-
tions ¢ (x) were available. The computations also
provide strong support for the arguments of Ref.
4 that statistical-mechanics averages are ob-
tained from integrals over x (which differs from
Sompolinsky’s'* dynamical interpretation) and for
the subsequent interpretation® of dx/dq as a prob-
ability distribution for overlap between magneti-
zations of phases. This insight into the physical
significance of replica-symmetry breaking may
be useful in other situations, for instance a fer-
romagnet with finite-range interactions in a ran-
dom field®® which is of considerable interest at
the moment.

The motivation for this work came from a stim-
ulating discussion with H. Sompolinsky. I should
also like to thank M. Kosterlitz and J. Vannimen-
us for helpful discussions.
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