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By combining the Emin-Holstein scaling theory of polaron formation with the scaling
theory of localization in disordered systems, the authors show that the nonuniform ex-
tended eigenstates above the mobility edge (responsible for the continuous drop of the
mobility to zero) collapse to localized polarons as the electron-phonon interaction is
turned on.
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The concept of a mobility edge has played a cen-
tral role in our attempts to understand the be-
havior of disordered materials. ' Recently great
progress has been made in analyzing properties
near the mobility edge in the absence of interac-
tions. ' 4 Despite these recent developments,
many basic issues such as the nature of the car-
riers in amorphous semiconductors, ' the Mayer-
Neldel correlation, ' and the peculiar behavior of
the Hall effect in P-type materials' remain unre-
solved.

It seems that the main obstacle in achieving a
sound understanding of the experimental situation
is the presence of interactions. In quasi one-
dimensional and quasi two-dimensional systems
the important role of electron-electron interac-
tion has been elucidated. ' Furthermore it is sus-
pected' that electron-electron interaction is re-
sponsible for the unexplained experimental facts
in impurity bands in crystalline semiconductors.

The question of electron-phonon interaction has
been addressed by Anderson, "who called atten-
tion to its importance in the region of localized
eigenstates. Emin" "has developed an exten-
sive phenomenology for amorphous semiconduc-
tors based on the notion that electrons form small
polarons. In this Letter we examine systematical. -
ly the influence of the electron-phonon interaction
on one-electron extended states just above the
mobility edge. %e show that the character of
these states changes qualitatively, and, hence,
close enough to the mobility edge the electron-
phonon interaction is very important.

Emin and Holstein (EH) have introduced a beauti-
fully simple scaling theory of polaron formation"
which works in the presence of a Coulombic im-
purity potential and even for finite-range poten-
tials. " The EH theory proceeds by examining
the total energy change introduced by constrain-
ing a previously extended state to lie within a
region of linear dimension J. Thus size scaling
is at the heart of the EH theory.

Over the last five years, a considerable body
of work on the size scaling of the properties' of
disordered systems has been built up. The basic
scaling parameters of a disordered system with-
out electron-electron or electron-phonon interac-
tions are the dimensionless conductance' g(L) and
its logarithmic derivative' P. The existence of
a correlation length $ characterizing the spatial
extent of the amplitude fluctuations of extended
states above the mobility edge is now well estab-
lished. ""For L» g, p approaches unity, the
value expected for a uniform state in three di-
mensions. '" For L «$, on the other hand, p
approaches zero, the value expected for a uni-
form state in two dimensions. Thus, on scales
L & t the extended eigenfunction appears highly
nonuniform occupying only a small fraction of the
available volume. A possible way to describe
such a behavior of the wave function is by intro-
ducing an effective dimensionality d which varies
continuously" from 3 to 2 as I.passes from above
to below $. More explicitly we make the plausible
assumption that

d = P + 2.

Clearly, a value of P & l cannot persist down to
atomic scales. Some distance g of the order of,
but larger than, the interatomic separation g,
where g' is the volume per atom, must be ex-
ceeded before the fractal dimensionality can mani-
fest itself.

We have found it possible to combine these two
theories into a single T=O scaling theory con-
taining both disorder and the el.ectron-phonon in-
teraction in the adiabatic approximation. Consid-
er an extended state above the mobility edge of a
disordered material in the absence of the electron-
phonon interaction. Suppose that we confine it to
a finite region of linear dimension I.by continu-
ously reducing its infinite extent through the im-
position of suitable boundary conditions. Follow-
ing EH, the sum of the electron-phonon interac-
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where lengths are measured in units of the inter-
atomic distance a. From extensive studies of A'
already carried out, we know that the prefactor
y has the form

(4)

for L» $" and must be of the order of unity for
In (4) $, is of the order of unity. A simple

interpolation formula carrying us between these
limits is

It must be pointed out that Eqs. (1), (3), and (6)
are definitely valid for L) $, while for L «g
they represent only plausible interpolations.

To obtain the single-particle energy change E,
(due to constraining the state into a volume of
linear dimension L), we observe that E, equals
(within a numerical factor) the shift of the eigen-
energy due to changing the boundary conditions
from periodic to antiperiodic. Thouless" has
shown that this shift can be expressed in terms
of the density of states per volume p and the di-
mensionless conductance g(L). Thus we obtain

&, = Bg(L)/L'p, (6)

where B is a constant. For L» g we can use the
Vollhardt and Wolfe" expression for g(L); for
L ( g, g(L,) must once again be linear in L. A

suitable interpolation formula is

(7)

Equations (6) and (7) are valid for $ ~ 1; for $ -1
(corresponding to states of uniform amplitude)
and L.= g, they reduce to the simple kinetic en-
ergy expression 3n'A'/2m*L', as they should.
This allows us to estimate B: B-100. For t»1
and L» g, E, is lower than 3v'h'/2m*L' by a
factor $/a reflecting the simple fact that it costs
much less energy to compress a highly fluctuating
eigenfunction than a uniform one. This fluctua-

tion and the polarization energy of the phonon is
given by

(2)

where c, is the amplitude of the wave function on
site I and A,

' is an effective coupling constant. The
sum in (2) is the inverse of the number of sites
on which the state has appreciable amplitude, N'.
The significance of the fractal dimensionality in-
troduced above is that

tion-induced reduction of the repulsive contribu-
tion combined with the fluctuation-induced en-
hancement of the attraction [see Eqs. (3) and (4)]
accounts for the instability of the states with

large enough g.
By minimizing the total energy AE=E, + V» with

respect to L, we ean find the size L, of a given
eigenstate as a function of the two parameters in
our theory: the dimensionless correlation length

$/a, and the dimensionless coupling constant A.

= (100/B)A. 'a'p -A. 'a'p, where a'p is the density
of states per atom. By employing the EH expres-
sion for A.

' we can estimate A. roughly as follows:

A. -(p/p)(E, '/Sa W),

where p is the band-average density of states per
volume, E, is the deformation potential coeffic-
ient, S is the bulk modulus, and $Vis the band-
width. Using EH, we estimate the value of A. re-
quired for small-polaron formation in a crystal
to be between 1 to 10. For crystalline semi-
conductors A. is roughly equal to or less than
1. On the other hand, because 5, F. , -a ' and
therefore A -a ', the value of A. for impurity
bands in semiconductors is extremely small
(-10 ' for Si), and one can neglect the electron-
phonon interaction in studies' of the metal-non-
metal transition there.

Our explicit results, based on the choice t,
=0.5 and g =3, are presented in Figs. 1 and 2.
The dependence of the total energy on length
for fixed A. and several values of g is as follows.
For small $, that is, well above the mobility
edge, E has a minimum only for infinite L, im-
plying no polaron formation. In this case, the
wave function and all the properties of the state,
including inter alia the mobility, are unaffected
by the electron-phonon interaction (in the adiabat-
ic approximation). As we approach the A, =p mo-
bility edge and $ increases, a minimum develops
in AE at finite L„ I, When this minimum cros-
ses the energy axis, an intermediate polaron,
i.e., one of I;/a-10 to 10', becomes stabler than
the extended state. Further increase of $ com-
presses the polaron size, increases its stability,
and greatly weakens the barrier against polaron
formation. The $ dependence of L, ' is shown in

Fig. 1 for various A. The value of t, $„at which
the transition occurs is plotted in Fig. 2 together
with the initial value of L„L, . Both quantities
show a power-law dependence on A,

IPg-»& L ~ —10'-»2

up to a value of A. of about 1, above which the in-
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FIG. 1. Dependence of the polaron size L 0 on 1/(
for various A..

termediate polaron collapses into a small polaron.
This behavior is in sharp contrast to the be-

havior of the ordered material, for which the col-
lapse occurs directly from extended states to
small polaron at A. values from 1 to 10. We note
that for L) (, the I. dependences of E, and V,
are essentially the same as for the ordered case
so that no polaron with L, ) $ can occur. The
formation of a polaron with L, & $, for large
enough $, does not depend on the explicit form of
our functions in the regime L & $. However, the
detailed results we presented depend rather
strongly on the interpolation formula for N'.

To summarize, the lattice-induced interaction
tends to compress the electronic eigenfunctions,
while the uncertainty principle favors their expan-
sion. For the extended eigenstates just above the
mobility edge F., the first tendency is enhanced

and the second is reduced as a result of their in-
homogeneity. Hence polarons are always formed
up to an energy E, at which they become unstable.
As E, is crossed from above we switch from an
extended state unaffected by the electron-phonon
interaction (in the adiabatic approximation) to a
localized polaron of finite extent I,,'. The corre-
sponding discontinuity 60 of the conductivity at
Eo was found to follow the scaling relation

log X

FIG. 2. The critical value $, below which no polaron
is formed as a function of A. The polaron size Lo cor-
responding to A, and $,(A) is also plotted vs log A,.

tetrahedral semiconductors A. is probably close
to 1 and consequently the polarons are expected
to be intermediate to small (L,' -10 to 1).

Several subtle issues must be clarified before
one attempts to analyze real materials in the
framework of the present results. Even the atypi-
cal case of a T= 0 heavily doped degenerate semi-
conductor, where the Fermi level may be made to
pass through E„presents additional complica-
tions arising from the electron-electron interac-
tions or the possibility of bipolaron formation. If
these complications are ignored, E, will appear
experimentally as the true mobility edge and 60.
will be a minimum metallic conductivity, as pro-
posed by Mott although its value for small A. may
be substantially lower than Mott's value. In the
typical ease of a nondegenerate n semiconductor
the situation is complicated again because of the
possibility of thermal occupation of either the
stable or the metastable states. The latter are
the extended (L= ~) states for E & E, and the po-
laron state for E & E,. The energy range of co-
existence of the two branches is determined by
lifetime effects arising when the adiabatic approx-
imation is relaxed. " Finally, finite-temperature
effects" will be very importa, nt in analyzing ex-
perimental data.

We acknowledge useful discussions with M. Qoda
and G. S. Grest.

with s =x2 and & =0.05e'/n'ak In the strong-coup-
ling case (A. -1) the transition is from uniform ex-
tended states as envisioned by Mott to small po-
larons as proposed by Emin. "" For a,morphous
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