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Boundary conditions on the monopole Dirac equation are, on the one hand, determined
by the requirement that the Hamiltonian be Hermitean. On the other, they enforce the
conservation of certain charges at the monopole core. Which charges should be conserved
is determined by the short-distance physics of the problem and the connection with bound-

ary conditions is worked out for several cases. It is found to be possible to impose phys-
ically reasonable conservation-law requirements which can be realized by no Dirac-equa-
tion boundary condition!

PACS numbers: 11.10.Qr, 14.80.Hv

The peculiarities of fermion-monopole interac-
tions in the S-wave sector give rise to interesting
physical effects including catalysis of proton de-
cay." In studies of these phenomena the details
of the monopole core are not very important: It
suffices to consider a point singular monopole
and impose boundary conditions on the fermions
which summarize the effect of the monopole core.
In this Letter we shall examine the role played
by these boundary conditions and study the extent
to which they are determined by requirements of
conservation of certain charges at the monopole
center. We shall discover that in the physically
interesting case of more than one flavor of fer-
mion, there is an incompatibility between conser-
vation laws and the standard picture of Dirac-
equation boundary conditions. This inc ompatibil-
ity has much to do with the peculiar physics of
monopole catalysis of proton delay.

We consider several flavors of Dirac fermions
having charges +e in the field of an Abelian point
monopole with a magnetic charge g = I/2e. This
monopole can be thought of as the exterior field
of a unified-gauge-theory monopole whose core
is so small that it can for most purposes be
thought of as a point. Each pair of fermions hav-
ing charges +e and —e can be thought of as a sin-
gle I = —, multiplet. In the following a single flavor
refers to one such multiplet.

The Dirac wave function has a well-known de-
composition in terms of eigenstates of the total
angular momentum operator'

3= L+5+qr,

where L and 8 denote the orbital and spin angular
momenta and q =—eg. For familiar reasons, we
will concentrate on the J=0 partial wave. The

In terms of the two-component radial wave func-
tion

the Dirac equation becomes

(iy5q d/dr —yom)g =Hy„

where

(4)

0 ' ~ 0

It is convenient to express the wave functions
in terms of eigenstates of y, .

Y5 XL XL Y5 XR XR

When ~ = 0, the equations for X~ and X„decouple
as usual. The one-component wave functions
r„,(r) and y~, (r) are now labeled by eigenvalues
of y, (L or R) and of q (+ or -). In wave-function
labeling, the quantity E =Q'y, plays a special role.
The eigenvalues of ~ are+ I and the correspond-
ing wave functions are denoted as y, (r). Parti-
cles and Bntiparticles have the same value of e
and the number of states with e = + and e = —are
always equal. Furthermore, the ~ eigenstates
have the crucial property that for positive energy
e =+ states are always outgoing waves while e

J=0 wave function may be written in the standard
form:

I u(rQ,
Pz=o=r

( )
'

where g, is a two-component monopole harmonic
satisfying

1983 The American Physical Society 1155



VOLUME 51, NUMBER 13 PHYSICAL REVIEW LETTERS 26 SEPTEMBER 1~)83

N

5~ Xi+ Xi+
r=o

N

= 5w xi-*xi-
j= 1

The obvious restriction on the space of X's which
achieves this is

x;,(o)=P II, , X,. (o),

where U„. is an arbitrary iV & N unitary matrix.
Note that one has 2N one-component fields and
that N linear conditions (i.e. , one condition per
Dirac fermion) are required to define the one-
particle Dirac equation.

The main pecularity of the Z =0 partial wave is
that various charges may "leak" into the mono-
pole core at y =0. This is because the flux of a
charge Q, given by 4«'J„~ (where J„ is the ra-
dial component of the corresponding current den-
sity), need not vanish at r =0. It is possible to
ensure conservation of some charges by properly
specifying the matrix U in the boundary condition
(6). One might think that II should be determined
by requiring that conserved charges should not
leak into x=0.' We shall see shortly that this is
not always the case. Consider, for example, a
single doublet of Dirac fermions. An expression
for the radial fluxes of fermion number, charge,
and axial charge, respectively, can quickly be
written down by remembering that y„, and y~

(x~, and xs ) are outgoing (incoming) waves:

4«'(A, ic) =F, =IX',l'- I xi, l'-Ix~-I'+IX'-I',

4«'(+„T,g) =J„
=IX',l'-Ixi, l'+IX' I'-Ixi-I', (v)

4«'%, r.t)
=J,'=IX~, I'+Ix„l' —Ix~-I' —Ixi I'.

If, for example, J„(0)w 0, electric charge leaks
into the monopole core. To guarantee charge con-
servation we must impose a quadratic condition
on the fields at y =0 rather than the linear condi-
tion required by Hermiticity. In the following we

= —states are always incoming waves.
The S-wave Hamiltonian in Eq. (4) is not self-

adjoint. However, there exist self-adjoint exten-
sions4 obtained by restricting the space of states
on which it acts. Consider N Dirac particles in
the field of a monopole (i.e. , N/2 flavors). The
self -adjointnes s condition

(0, II&) =(II', (),
for arbitrary g and g, becomes, in terms of the
c eigenstates,

shall examine some particular cases to deter-
mine whether it is possible to implement these
quadratic relations as linear conditions on the
Dirac equation, thus determining the boundary-
condition matrix U.

Case I: Single Dirac particle of charge +e.—The two one-component fields are X~ and yi.
The most general linear boundary condition is

x (0) =e'"x (o), (8)

X~+ 0
U y„ 0

where U is a 2x 2 unitary matrix. There are now

takeo linear boundary conditions, and one might
try to produce the same effect by imposing two
independent conservation-law conditions. We
shall explore two possibilities:

(a) F„(0)=J„'(0)=0 (conservation of fermion
number and axial charge). From the flux expres-
sions in Eq. (7) this implies

Ix~. (0)I'=IX~ (o)l', lx„(o)l'=IX' (o)l'. (ll)
These conditions can be easily seen to be realiz-
able by

(12)

This choice of U does not conserve electric
charge.

(b) F„(0)=J„(0)= 0 (conservation of fermion num-
ber and electric charge). This is realized by

Ix, (o)l'= Ix„(o)l', Ix I)I'=Ix — (o)I', (I&)

which is equivalent to the Hermiticity boundary
conditions with

(14)

0. being arbitrary. The two relevant charge flux-
es are

F.=J.=lxsl'-Ixil' J,'=IX~I'+Ixil'

Obviously, it is impossible to have J„'(0)=0, so
that axial charge is never conserved. However,
the boundary condition (8) automatically ensures
that fermion number and electric charge are con-
served for any e. Thus the set of charge-flux
conservation laws has the same content as the
Hermiticity condition.

Case II: 2 single flavor (i e , on. e .doublet).—There are now four one-component fields:
and xi„. The boundary conditions (6) take the
for m
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Therefore in this case a special choice of linear
boundary conditions is equivalent to a set of quad-
ratic conditions dictated by conservation laws.

Case III: 7'zoo I=2 multiPlets X and e.—This is
the relevant fermion content in the context of a
monopole in a grand unified theory. " One now
has eight single-component fields:
u~, , and (Ai~„and the boundary conditions in Eq.
(6) translate into four linear relations:

The corresponding fluxes may be read off from
a trivial extension of Eqs. (7). Thus,

E x(0) =0

implies

lx, (o)l'+Ix - (o)l'= Ix, (o)l'+Ix (o)l', (16a)

while I"„"(0)=0 implies

l~~,(0)I'+l~~-(0)I'= i~i.(0)l'+l~~ (0)I' (16»

These conditions are realizable in the set of lin-
ear conditions of Eq. (15) if U is of the block-
dlagonal form. '

The underlying field theory would require four
charges to be rigorously conserved: the electric
charge, the fermion number of each multiplet,
and the difference of the axial charges of the two
multiplets. The sum of the axial charges is not
conserved because of an anomaly, but the anom-
aly cancels in the difference.

where u, and u, are 2&&2 matrices. Conservation
of the net electric charge requires

J„'(0)+J„(0)=0,

which means

Ix~, (0)l'-Ixi (0)I'+l~s, (0)l'-i~i-(o)I'=Ix~. (o)l'-Ixs-(o)I'+I~i. (0)l'-I~~ (o)l'

Conservation of the difference of axial charges requires
J' 5x (0) J' 5uf (0) 0

which becomes

Ix, (o)l'- Ix (o)l'- l~„,(o)l'+l~, (o)l'= —Ix, (o)l'+ Ix (o)l'+i~„(0)l'- l~„(0)l'.

(18)

(19)

It is straightforward to see that the two conditions
(16) and (19) cannot be satisfied for any choice of
u, and u, . The incompatibility of conservation-
law boundary conditions with the Hermiticity con-
ditions is in fact a generic feature for situations
in which there are two or more fermion flavors.
This does not mean that the conservation laws
are inconsistent, but only that they cannot be re-
alized on a single-particle-state space described
by the Dirac equation with linear boundary condi-
tions.

Our discussion drives home a major lesson:
With a large enough complement of fields, some
physically reasonable sets of conservation-law
boundary conditions cannot be realized as linear
conditions on the Dirac equation. This does not
mean that the conservation laws are inconsistent:
Bather they imply nontrivial particle production
and are not realizable on the single-particle-
state space of the field theory. This in fact pro-
vides an explanation of why phenomena like mono-
pole catalysis of proton decay occur only if we
have two or more Dirac doublets. It also indi-
cates that ca.lculation of the catalysis S matrix

!is a complicated dynamical problem.
This problem can be seen in a slightly different

light by remembering that, through the device of
bosonization, ' the s-wave fermion-monopole sys-
tem can be rewritten as an equivalent scalar-
field theory. Although the scalar fields are com-
plicated nonlinear functions of the original Fermi
fields, all of the currents we have considered
turn out to be linear functions of the scalar fields.
For that reason, any consistent set of conserva-
tion-law boundary conditions reduces to a set of
linear conditions on the scalar fields, no matter
how many Fermi multiplets there originally were.
Since partial differential equations with linear
boundary conditions are easy to think about, the
scalar language is quite useful for qualitative in-
sight even though it does not solve the problem of
calculating the 8 matrix.

On the other hand, since the scalar field is a
more or less explicit function of the Fermi fields,
one might hope to convert the simple linear sca-
lar-field boundary condition into a complicated,
nonlinear but explicit, condition on the Fermi
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Fock space from which to read off the S matrix.
At the moment, this is but a vague idea on our
part, but we hope one of our readers will see how
to realize it.
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