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In a number of studies' of the sensitivity of
nucleon-nucleon bremsstrahlung to variation in
the potential, it has been found that if these
changes are confined to sufficiently small dis-
tances, and they preserve the phase shifts, then
the bremsstrahlung cross section is not strongly
affected. These calculations were motivated by
the belief that beyond some distance (approxi-
mately 1 fm) the nucleon-nucleon interaction is
describable by a known potential, due to the ex-
change of one and two & mesons and one v me-
son. At small distances, however, where the
structure of the nucleon plays a vital role, the
nature of the interaction is not well established.

This situation prompted Belier and Low' to
formulate an extension of the soft-photon theorem
for bremsstrahlung. ' The idea is simple. If the
interaction really is known beyond some distance,
then the contribution to the bremsstrahlung am-
plitude from that much of the interaction ought
to be calculated exactly. The contribution from
the (short-range) remainder is treated in pre-
cisely the same way that the full interaction was
in the original derivation. Although a proof of
the extended theorem appears in Ref. 2, a sim-
pler presentation is given here.

We first give a brief summary of the original
version' of the theorem. It says that one can
compute the amplitude for the process

A+B -C+D+photon

with an error O(k), where k is the energy of the
photon, in terms of the physical amplitude for
the process

(2)

and the static electromagnetic moments of the
particles, It should be remembered that the am-
plitude for (1) is O(k ') in the limit k -0, so that
two terms of the expansion in powers of k can be

calculated from on-shell information. The theo-
rem takes the form

Mt' = M„&(T)+O(k),

where M" is the true bremsstrahlung amplitude
and Mos "(T) is an on ske-ll approximation to it;
it is, in fact, a linea&function of T, the on-shell
T matrix for (2).' The latter is supposed to be
known from elastic scattering experiments.

The original proof' was a constructive one,
that is, it provided a realization of the theorem
in the form of a specific formula for Mps" (T). It
is clear from the derivation that this formula is
not unique, and several others were subsequent-
ly written down, ' all differing by amounts O(k).
Any such formula will be designated Mos "(T).

Now suppose that the interaction which is re-
sponsible for (2) contains a short-range part and
a long-range part, and that the latter is known
theoretically. The statement of the extended the-
orem is

M~=Mos~(T)+[M, ~-Mos~(T, )j+O(k). (4)

The quantity within brackets in Eq. (4) represents
a correction to the original version of the theo-
rem. It consists of the difference between the
exact bremsstrahlung amplitude calculated from
the long-range part of the interaction, M~",
and the on-shell approximation to that amplitude,
Mos"(T~); T~ is the (theoretical) T matrix due
to just the long-range part of the interaction.
The significance of the correction, of course,
resides in the term O(k), called the error, which
we expect to be smaller than the error in Eq. (3).
We shall return to this point after providing the
theorem.

Since the only requirements for the proof' are
analyticity of the internal emission amplitude at
k=o and gauge invariance, both of which apply
just as well to the long-range part of the interac-
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tion as to the full interaction, one can also write
Eq. (3) for the former, and then subtract to ob-
tain Eq. (4). The motivation for carrying out
this subtraction is the well-known result from
the two-potential problem that the difference T
—TI. is characteristic of an interaction with the
short range rather than the full range; and fur-
thermore, the error in the on-shell approxima-
tion is expected to decrease with decreasing
range of the interaction. "

In the present paper we test the extended theo-
rem on a model problem consisting of two dis-
tinguishable spinless particles that interact via
a static potential at all distances. Since the
exact amplitude I"can be calculated in this
model, in addition to the three amplitudes on
the right-hand side of Eq. (4), so can the error.
Ultimately, of course, one will want to test the
theorem on real data.

Our procedure for dividing the interaction into
short- and long-range parts is based upon the
above discussion of the nucleon-nucleon problem.
We divide space into an inner region and an outer
region sharply at a separation b, and define the
long-range part of the interaction to be the known
potential for r&b, and zero for ~&6. Clearly 6

can be chosen to be any distance greater than
the minimum one at which the potential is known,
and we shall in fact treat b as a variable.

The discussion in the literature" about the
dependence of the error on the range is only
qualitative, and we show below that if the inter-
action contains both repulsive and attractive
parts, then the error in Eq. (4) does not decrease
monotonically as b is decreased. It could happen,
therefore, that choosing b to be the minimum dis-
tance at which one knows the potential might not
be optimal. It is straightforward to see that, at
least in potential theory, there is a better vari-
able for describing the error in Eq. (4). In this
domain the bremsstrahlung amplitude is com-
pletely determined by the T matrix, off shell as
well as on shell; consequently, if the quantity

~
T-T~~ is small, so must be ~M" -MI"

~
and

also ~Mo~ "(T) —Mos "(Tl,) ~. In applications of
the soft-photon theorem, however, off-shell in-'
formation is not supposed to be available. We
were led, therefore, to try the very simple hypo-
thesis that the on-shell difference

~
T —T~I be

used to determine the optimum value of b.
To test these ideas we have studied two differ-

ent potentials. For each potential and at various
kinematic points we calculate all four amplitudes
and the error in Eq. (4) as a function of b, and

1152

look at the correlation with
~
T —T~~.

For spinless particles and coplanar geometry,
all the physical information in the bremsstrah-
lung amplitude is contained in a single complex
number. This follows from the existence of only
three independent vectors, which are coplanar,
from which the vector amplitude must be con-
structed, and from the additional fact that only
the transverse component contributes to the
cross section. Thus, the error term in Eq. (4)
can be expressed as one complex number, the
magnitude of which is shown on our graphs.

For the on-shell-approximation amplitudes in
Eq. (4) we took the nonrelativistic limit of the
prescription given in Eq. (2.16) of Ref. 3.' In
that limit the on-shell T matrix and its energy
derivative are evaluated at a center-of-mass
energy E which is the average of the initial and
final energies of relative motion of the two par-
ticles, and at a momentum transfer equal to that
which the uncharged particle experiences.

At stated above, for any assumed potential V

the long-range potential V~ is equal to V outside
the distance b, and exactly zero inside. T~ was
computed as a function of b by numerically solv-
ing the partial-wave Schrodinger equation for
the phase shifts ~„and inserting them into

Q (2&+1)e' ~ sin5, I', (cos6).
8n

m is the common mass of the two particles and
was taken to be the nucleon mass. T is the value
of T~ at 6=0, because the long-range potential
then becomes the entire potential.

The exact amplitudes M and M~ in Eq. (4) were
computed as in Belier and Rich, ' except that the
Coulomb potential and spin were not included.
We carried out various checks which indicated
that each term in Eq. (4) has enough accuracy to
obtain a meaningful error term. In one of these
checks we compared M" with Mo, "(T) near the
limit that the photon energy vanishes, and ob-
tained agreement to about 0.1/p.

With the exception of the transformation of the
kinematical variables from the laboratory frame
to the center-of-mass frame, which was relativ-
istic, the entire calculation was carried out non-
relativistically.

(1) Purely attractive potential. —For our first
example, we took the potential to be a single
Yukawa function, V= —V, exp(-gr)/pr, where V,
= 50 MeV and p, =1.4 fm-', Results for this po-
tential are shown in Fig. 1, where we have plot-
ted the magnitude of the error and

~
T —T~~ ver-
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for example, the net effect of the attractive and
repulsive parts of the potential is attractive. As
b starts to decrease from infinity, the long-range
potential starts to become attractive and ( T —T~~

decreases. But as b decreases beyond -1.1 fm,
the long-range potential becomes more attrac-
tive than the net effect of the complete potential,
and

~
T —T~~ starts to increase. This continues

until b - 0.6 fm at which point the potential be-
comes repulsive, and then

~
T —T~~ decreases

again. The remarkable result is how closely the
error in Etl. (4) follows this same pattern.

In the course of examining the range of validity
of the (T —T~~ prescription, we came across a
very small kinematic region in which the original
version of the theorem is superior to the extend-
ed theorem. At a laboratory energy of 100 MeV,
with 0=30 and 8&=10, the original theorem
just happens to be extremely accurate, within
0.8gp of the exact result. The effect of decreas-
ing b is to increase the error rather than de-
crease it, but even so it is only 3.2~/p at the min-
imum of

~
T —T~~. It is not surprising that such

a region should exist. Indeed, there is probably
a kinematic point at which the original theorem
is exact, since that requires the vanishing of a
complex number (the error) and there are two
real variables 0 and 0& upon which that number
depends (for fixed E~).

In this paper we have tested the extended theo-
rem on a model problem in potential theory, us-
ing a particular on-shell approximation. ' At
many kinematic points it represents a significant
improvement in accuracy. over the original theo-
rem; and in the small kinematic regions where
it does not, it still gives a good approximation to
the bremsstrahlung amplitude. We expect similar

improvement for other choices of the on-shell
approximation, and also when the theorem is ap-
plied to experimental data.

One of us (L.H. ) wants to thank Francis Low for
conversations in which the extended theorem was
formulated. We are greatly indebted to Marvin
Rich for the use of his lengthy computer program
for calculating the exact bremsstrahlung ampli-
tude.
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