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New expressions for the availability dissipated in a finite-time endoreversible process
are found by use of Weinhold's metric on ecluilibrium states of a thermodynamic system.
In particular, the dissipated availability is given by the square of the length of the cor-
responding curve, times a mean relaxation time, divided by the total time of the process.
'&he results extend to local thermodynamic equilibrium if instead of length one uses dis-
tance (length of the shortest curve) between initial and final states.
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The results presented below give an important
tool for finding limits on the efficiency of' opera-
tion of thermodynamic processes in finite time.
We have been pursuing various approaches to
this problem for several years, ' but the results
below give a new inroad for a remarkably gen-
eral class of processes by providing expressions
for the inherent irreversibility quantified by the
loss of available work: the availability not trans-
formed into work during the process. This dissi-
Pated availabil. ity is sometimes called "irreversi-
bility. '" The dissipated availability dA„ is re-
lated to the entropy production dS„by dA„= TdS„.

We derive expressions for the availability dis-
sipated when a thermodynamic system undergoes
a process during which it may be assumed to be
in internal equilibrium, though interacting with
an environment, which is also in equilibrium.
Since the dissipated availability is an extensive
quantity, an extension of our expressions to local
thermodynamic equilibrium is immediate. These
expressions involve the thermodynamic length
introduced by Weinhold" and hint at the exis-
tence of a temporal element in the classical
formalism dealing only with equilibrium.

We assume that the time scales for internal
relaxation of system and surroundings are much
shorter than the time scale on which system and
surroundings interact. This implies that we may
consider both system and surroundings to be in
equilibrium states at each instant of time. This
assumption is already among the postulates for
local thermodynamic equilibrium. The macro-
scopic form of this assumption was introduced
by Rubin'. a process is e~do~evexsible provided

the subsystems participating in the process are
in internal equilibrium at each instant. The ex-
pression given below for dissipation in a shock
wave hints that our expressions for the dissipated
availability are valid in a context wider than our
derivations based on endoreversibility show.

Besides the total time for the process, our ex-
pressions for the dissipated availability include
only one nonequilibrium parameter: the mean
relaxation time. The interpretation of this relax-
ation time is straightforward for processes dur-
ing which the system and its environment are
close to equilibrium with each other. This auto-
matically holds (except perhaps at the boundary)
if the local thermodynamic equilibrium model is
appropriate.

We now define the notion of thermodynamic
length. The second-derivative matrix of the in-
ternal energy U with respect to extensive vari-
ables X =(X„.. . , X„),

rt;, = 8 U/BX, BX, ,

was called the "stiffness tensor" by Tisza. ' Ac-
cording to the traditional view, "rt= [ t), , j is the
second fundamental form' of the equilibrium sur-
face U = U(X) and, for small displacements M'
=X -X', M'pe measures the vertical distance
between the surface and its tangent plane at some
pointX =(X, , . . . ,X„). If U= U +VU~zo AX is
the equation of the tangent plane, then

U- U=-,'P q, , ~X,. ~X„=-,' ~X't)~X.

Gibbs' identified this (2) as the available work,
now called availability or energy, that may be
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obtained from a system that can return from its
displaced state at X to the state of equilibrium
with its environment at X'. Denoting the inten-
sive variables by Y, = &U/&X;, we note that,
again for small displacements from equilibrium,

~l", =Pq, , ~x, . (3)

Weinhold showed' that the first and second laws
of thermodynamics endow q, , with the positivity
required to make it a metric, or first fundamen-
tal form, on the surface of thermodynamic states,
wherever the matrix g is nonsingular. ' Consider
a path y on the space of thermodynamic states.
The length L of y as measured by g is indepen-
dent of parametrization, but may be written in
terms of a parameter $, 0 g (( '", so that

dx dX
S eg

'g max

d( nd] I

The dimensions of L are those of (energy)'i' or,
if specific energy is used, L has the dimensions
of speed. We call L the "thermodynamic length"
of the path y. This quantity may be evaluated
easily for a variety of processes, from a knowl-
edge of the equation of state of the working ma-
terial. It was shown" that I corresponds to the
change in a mean molecular velocity character-
ized by the particular nature of the process de-
flnlng g,

The physical interpretation of the thermody-
namic length turns out to be much richer and
more important than we had recognized. We
show here that it is intimately connected with
expressions for the dissipated availability in a
thermodynamic process. To be more precise,
we recall the term "endoreversible, " introduced
by Rubin': an endoreversible process is a proc-
ess in which the system itself undergoes only
quasireversible transformations and all irrever-
sibilities occur at the boundary between the sys-
tem and its environment. Formally, we assume
that such a process is defined by X(t), the asso-
ciated F(t), and the intensities l"(t) of the en-
vironment, where o-t-~ may be time or just a
convenient parameter for the process. The best
way to imagine the variation of E' (t) is as a suc-
cession of reservoirs that the observer can put
into contact with the system in order to drive it

along the desired path X(t). The availability dis-
sipated by such a process is given by

;F t -F;t dx; dt dt

= J (l" -y) dx.
Note that this integral is also independent of pa-
rametrization. ~„ is the change in the avail-
ability of this two-system universe. Such avail-
ability changes typically represent losses, al-
though, for example, part of the energy in the
(P' -P)dV term (where P and V represent pres-
sure and volume, respectively) may go into the
kinetic energy of a piston which may be recover-
ed. The assumption inherent in calling ~„the
dissipated availability is that all work extracted
from the process be counted as part of the change
in internal energy of a work reservoir in the en-
vironment.

We now define X'(t) by requiring

l"(t) —r(t) =qi &„[X'(t}-X(t)]
to hold. Since q is nonsingular, 'X'(t) is well de-
fined. For 1" near Y, X' is the state of our sys-
tem which would be in equilibrium with the en-
vironment at l; see Eq. (3). Substituting (6}
into (5) and changing to arc length S as our pa-
rameter, we get

m„= J (dx/ds)'q(x'-x)ds. (7)

Since S is are length along y=X(t), dX/dS is a
unit vector. The integrand is just the dot product
of X' -X and dX/dS, relative to the metric q.
Therefore the integrand is just the length of the
projection of X'-X onto the direction dx/dS
tangent to y (see Fig. 1). We call this projected
distance the lag distance, and denote it by D.
Equation (7) can be interpreted in differential
form to say that the rate of change of ~„per
unit distance moved in any direction is the length
D of the projection of X'-X along that direction.
A convenient form of (7) may be obtained by
multiplying and dividing by I.:

where D is the average lag distance along the
path y.

Since D, and hence ~„, depends only on the
component of X'-I along X but is otherwise in-
dependent of the exact location of X', we may
replace X'(t) in (7) by (see Fig. 1)

X' =X+DdX/dS.
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where ~ is mean lag time. Note that the average
of e is taken over time and hence is dependent
on parametrization, while the average of D is
taken over arc length and is independent of pa-
r ametrization. The parametrization along y also
affects the integral in (13). Its range of possible
values is indicated by"

J X'qXdt-[ f (X'qX)J'dt]'/&=I. '/~. (14)

FIG. 1. The path y=X(t) in the space of extensive
variables of the system. dX/dS is the unit tangent and
X~ is the projected state of the environment. D is the
lag distance.

Though all the formulas remain valid generally,
for the sake of interpretations it is convenient to
assume that g is constant, an approximation
which is good only for X' near X. Then we can
identify D with the distance from X to X'. We
can also interpret X' as the state of equilibrium
of our system in contact with an environment ~'
provided displacements from X are constrained
to be tangential to y atX. This follows since the
availability for the system at state X is (X' —X)'
x q(X' —X}, which is minimum for X=X'. In this
sense we interpret D as the distance between the
state of our system and its state of equilibrium
with the environment.

We now define the lag time e = D/(dS/dt). Then

(10)

and if we take e small (again only for the sake
of interpretation), we get

X' =X(t+s),

explaining our choice of a name for c.
For X' near X, our system is near equilibrium

for the aforementioned equilibration process with
4X constrained to be parallel to X. In such an
equilibration process D decays exponentially
with rate constant -c '=(dD/dt)/D, i.e., with
relaxation time ~.

Using e in (7) and switching to time t as the
parameter gives

which gives

This inequality can be deduced either by minimiz-
ing the integral on the left over possible param-
etrizations on [0, 7 ], or by the Cauchy-Schwartz
inequality. " Using inequality (14) in (13) we
arrive at our central result,

dA„» ZI /7, (15)

with equality only for the most favorable time
parametrization of y, i.e., the one for which

IX I=(XgX)'~'= ocnts=1, / .7 (16)

This shows that for processes with given mean
lag time c, the process dissipates minimum
availability when it proceeds at constant speed.
We may also interpret (15) to say that for an en-
doreversible process, the dissipated availability
is bounded by the mean lag time times the square
of the Weinhold length L divided by the total time
of the process.

Bounds on e or e obtained from a detailed
knowledge of the relaxation times during a proc-
ess can further be used to bound ~. For ex-
ample, suppose that each degree of freedom X;
has an associated constant relaxation time e;.
Then c is the weighted average of the e, , where
the weight of e,. is givenby the dissipation J (Z
—&;)dX; in the ith degree of freedom. In par-
ticular the smallest relaxation time min, fe, j
can be used as abound for ~.

A general bound can be given for ~„even
when the e,. are not constant, but abound is
known for the states along y (or for a region con-
taining y). In fact the use of any such bound can
be extended to a process which proceeds via
states of local equilibrium. Let e be such a
bound. Assume that the paths followed by dif-
ferent elements of the fluid all begin and end at
the same equilibrium states Xo and X,. Then L'
for any such path is greater than or equal to
[d(X„X,)]', the square of the length of the short-
est such path, and using the fact that L' is ex-
tensive we have

~„=eJ X'qXdt, (13) ~„o~ [d(X„X,]'/~.
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A slightly different lag time
e' = Dr/L

is obtained-on dividing D by the average speed
L/7 rather than the instantaneous speed dS/di.
e' has the advantage that we get an equality ver-
sion of (15),

M„=e' L'/7.

It follows from (14) that

(20)

with equality only for a constant-speed process.
We consider two examples. The availability

transferred to flow velocity during the passage of
a shock wave was seen in Ref. 10 to be I.'. This
implies that if an endoreversible model may be
used for such a process, it must have D= L and
e'=~, i.e., a mean lag distance equal to the
length of the process and a mean lag time equal
to the time of the process. Next consider a very
different example provided by the endoreversible
isothermal heating of an ideal gas. If we assume
very fast pressure equilibration, i.e., p' =p,
and Newton's law heat transfer to the gas through
conductance K, we find e' = e =R/K for heating at
constant speed (e = 0).

Above we found bounds for the inherent irre-
versibility as measured by the dissipated avail-
ability in a thermodynamic process. Except for
one parameter —the mean relaxation time —the
bounds involve only equilibrium properties of
the system. If the process proceeds via states
of equilibrium of the system, the bounds involve
L,', the square of the thermodynamic length of
the process. If the process proceeds via states
of local thermodynamic equilibrium, the bounds
involve d', the square of the thermodynamic dis-
tance (length of the shortest path) between initial
and final states. Although the above arguments
apply only in thyrse two cases, some evidence
points to their validity in an even wider context
and reveals a hitherto unrecognized temporal

element within the formalism of equilibrium
thermodynamics.

The extension of these lines of reasoning to
local thermodynamic equilibrium as well as fur-
ther examples and connections between Wein-
hold's metric and other useful metrics in thermo-
dynamics will be discussed elsewhere. "

We wish to thank Dr. 8. Wald, Dr. B. Andresen,
Dr. J. Molony, Dr. J. Nulton, Dr. J. D. Flick,
and Dr. H. Bray for helpful conversations, and
the Aspen Center for Physics for its hospitality
and stimulating environment. This research
was supported in part by a contract with the
U. S. Department of Energy, and in part by a
grant from the Petroleum Research Fund admin-
istered by the American Chemical Society.

'B. Andresen, P. Salamon, and B. S. Berry, "Ther-
modynamics in Finite Time, " to be published.

~J. H. Keenan, Thermodynamics (MIT Press, Cam-
bridge, Mass. , 1966).

31'. Vfeinhold, J. Chem. Phys. 63, 2479 (1975), and
65, 559 (1976).

4Q. Ruppeiner, Phys. Rev. A 20, 1608 (1979).
M. Rubin, Phys. Rev. A 19, 1272 (1979).

6L. Tisza, Generalized Thermodynamics (MIT Press,
Cambridge, Mass. , 1966).

J. %. Gibbs, Collected Works, Vol. l: Thermody-
namics (MIT Press, Cambridge, Mass. , 1970).

BGf. M. M. Lipschutz, Differential Geometry (McGraw-
Hill, New York, 1969); or W. C. Grausteiu, Differen-
tial Geometry (Dover, New York, 1966).

~This condition is violated only in systems with co-
existent phase equilibria. Generally, the dimension-
ality n must conform to the number of coexisting
phases in accordance with the Qibbs phase rule.

' P. Salamon, B. Andresen, P. D. Gait, and R. S.
Berry, J. Chem. Phys. 73, 1001, 5407 (1980).
"J.Milnor, Morse Theory (Princeton Univ. Press,

Princeton, N.J., 1970), p. 89.
'2Use ff fg ~~( ffg)~ withf = 1 g=(X~@X)~~. Equal-

ity holds only if f = Xg, i.e., if the Weinhold speed
(X'gX) '~2 is constant
'3P. Salamon, B. Andresen, and R. S. Berry, to be

published.

1130


