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Scaling of Kinetically Growing Clusters
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A model describizg the process of cluster growth by aggregation of clusters is intro-
duced and investigated with the Monte Carlo method. Et is found that the clusters are
scale invariant. Tge fractal dimension of this new class of kinetic critical behavior is
D = v ' = 1.38+ 0.06 in d = 2 dimensions as determined by the radii of gyration and the
density correlations of the aggregates T.he process is compared with other types of
kinetic and equilibrium critical phenomena.

PACS numbers: 05.50.+q, 64.60.Cn, 82.70.Dd

The aggregation process, i.e. , the mechanism
of cluster formation from isolated single parti-
cl.es, is of interest in many areas of science such
as physics (dendritic growth'), chemistry (floccu-
lation of colloids, ' formation of gels'), polymer
physics (kinetics of polymerization' ), medicine
(growth of tumors'), and metereology and ecology
(cloud formation, coagulation of smoke parti-
cl.es' ')

The enormous progress made in the theory of
critical. phenomena has influenced the way one
looks at the geometrical objects encountered in
the above exampl. es. This was recognized when
a connection coul. d be establ. ished between pol.ymer
statistics, ' respectively percolation, "and criti-
cal. phenomena that leads to a characterization of
such systems in terms of seal. ing and universal-
ity." Al. ternativel. y, the theory of fractals" de-
scribes tht same phenomena on purely geometri-
cal grounds, showing that it is not necessary to
make reference to a statistical mechanical system
governed by a Hamil. tonian.

The field of critical behavior of clusters has
been very active recentl. y, particularly in the
domain of growth models, whose irreversibility
l.eads to scaling properties that are possibly dif-
ferent from those of equil. ibrium systems. "

In the present calcul. ation, we establish scaling
for a process encountered in a wide range of kin-
etic clustering phenomena, notabl. y floccul. ation
and coagulation. The model is a growth model
that describes the clustering of clusters. One
starts with an assembly of Brownian particles
which stick together upon contact to form rigid
clusters. The newly formed clusters diffuse along
with the particl. es and continue to grow by aggre-
gation when they meet other clusters or parti-
cles. The connection of this model with previous-
ly studied models is as follows: Singl. e-particle
diffusion-limited aggregation has critical prop-

erties which are different from percolation and
probably different from lattice animals. '~ The
growth process under investigation resembles
diffusion-limited aggregation in its kinetic mech-
anism. However, as we deal with many clusters,
there are similarities to ordinary or kinetic per-
colation as used to describe gelation. As a conse-
quence, one expects that the scaling properties
are qualitatively different from both of the above
situations. Our simulation indicates that, in two
dimensions, the clusters are much more stringy
than in al, l of these models. In the l.ow-density
regime, the model scales, suggesting that it may
be self-similar, with a fractal dimension B=1.38
+ 0.06 as determined from the radii of gyration
and the density correlations. As the clusters
grow, the effective cluster density increases and
eventually they cover the whole space.

The actual calculation is performed on a per-
iodic square lattice with P=L' sites with initially
N, randomly distributed particles. Clusters (par-
ticles connected by nearest-neighbor bonds) are
rigid and move randomly one lattice spacing at a
time. Clusters that touch (occupy nearest-neigh-
bor sites) become part of a new, larger cluster.
The clusters do not rotate. This idealized motion
presumabl. y does not affect the critical proper-
ties; thus a continuous movement of spherical.
particles forming rotating clusters woul. d yield
the same results. " According to our calculation,
the type of kinetic motion does not affect the re-
sul. ts. Most of the calcul. ations were performed
supposing that a cl.uster of N particles moves l.ike
a Brownian particle of mass N (probability to
move cr- I/vN), but the same exponents were ob-
tained when we l.et all clusters move al.ike inde-
pendent of their size or when heavy clusters
hardly moved at al.l. Though the size distribution
varies somewhat with the kinetic prescription,
the qualitative aspects remain unchanged.
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FIG. 1. Simulation of the growth of clusters. The three situations correspond to N, = 86, 8, and 1 cluster, re-
spectively. The system has a size I. = 128 and initially No= 1024 particles; the effective density grows from po= 0.06 to p&

~ 1. Note the chainlike appearance and the few branchings of the clusters.

The critical properties were extracted with
use of bvo related measures characterizing the
clusters. First, we determined the average size
R(N) of a cluster as a function of the number of
particles in it. The radius of gyration behaves
like

R-N' N-R D=1/v,

as N-~. Secondly, we determined the density
correlation function C(r) = (p(r, + r)) at a point
r, of the cluster. It scales l.ike

C-r ", A. +D=d, 1«r«R,
where d is the space dimension (d = 2) ~ The av-
erages are over all cluster configurations. In
the simulation the average is taken over al.l the
clusters with N particles for R and over all. r,
and all directions for C(r).

In Fig. 1, the evolution of the clusters is shown
for a system of size L =128 with initially 1024
particles. As the number of clusters N, decreas-
es and the average number of particles per clus-
ter n =N, /N, increases, the size of a cluster is
V, = R' -n"" and the effective density p, f&

= N, ( V, /
V)- p, n(d —D)/D grows for ramified (D& d) struc-
tures. No matter how low the initial concentra-
tion, the clusters eventually cover the whole

space (p, &i
- 1). The anticipated self-similarity

under a change of scale then breaks down. In or-
der to stay in the scaling region of interest, one
has to lower the initial concentration with increas-
ing system size L. In Pig. 2, the regions of dif-
ferent eff ective concentrations are indicated. The
correlation function C (r) distinguishes between
an initial nonuniversal region and the following
scaling region which terminates for low final con-
centration (all particl. es in one cluster) pz«1 at
r -R and for p~ ~ 1 crosses over to a more com-
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FIG. 2. Correlation function C(x) (log-log plot) at
different densities pg ff ' crossover from dilute to com-
pact region. The number of particles are No = 512,
1024, 2048, and 4096, and the radii of gyration R= 27,
44, 51, and 55, respectively. While the radius of
gyration limits the scaling region for low densities
p~ «1, the mutual hindrance of the clusters terminates
it for p~-1.

pact region. Our calculation determines the ex-
ponents A. and v and we find that this kinetic
growth model is scale invariant, as shown in
Pigs. 3 and 4. The values A, =0.61+0.05 and
v = 0.73 + 0.04 satisfy d -2 = D = 1/v. As in other
simulations of this kind we find that each simu-
lation is quite smooth but that there are quite
large statistical errors between different trials. '4

There are other quantities which can be meas-
ured in the simulation. One, which explains why
this model has very different critical properties
than previously studied systems, is the size dis-
tribution of the clusters. It shows a broad and
fl.at peak which allows clustering of clusters over
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FIG. 4. Correlation function C(r) for the same sam-
ples as in Fig. 3. The slope of the straight line is 0.61.

FIG. 3. Radius of gyration (log-log plot) in the scal-
ing region. Average of ten samples with L, = 128 and
No= 1024 with typical error bars (crosses) and two
samples with L = 450 and No= 5000 (dots). The straight
line has slope 0.73.

a wide range of sizes (provided 1«N, «N, ), to-
tally different from single-cluster aggregation.

Recently, Allain and Jouhier" observed clus-
tering of clusters in a macroscopic experiment.
At the percolation threshold" they find v = 0.61,
intermediate between percolation and irreversible
ct.ustering. The experiment shows a slight tend-
ency to restructure the clusters which may ex-
plain that the effective exponent D,ff & D. Another
aspect of their experiment is important: The
motion of the clusters has both a random and a
hydrodynamic element. Experimentally the in-
fl.uence of both parts cannot be separated. In our
simulation we study the irreversible part alone. "

In Table l, the exponent 6= 1/v for kinetic and
equil. ibrium critical. phenomena are compared.
The present model is far more ramified than
lattice animals and single-particl. e aggregation.
The linear appearance and the few branchings
suggest a behavior not unl. ike linear polymers.
In the light of the present calcul. ation and the ex-
periment of Al. lain and Jouhier, " the smoke-

TABLE I. Comparison of the fractal dimension D
= 1/p of the present model and of other kinetic and
equilibrium critical phenomena. The estimate of D
for the present model is based on the data of Figs. 3
and 4.

Phenomena
Exponent
D (d= 2)

Present work
Eden model'
Percolation
Single-particle aggregation'
Lattice animals ~

Linear polymers~
Smoke particles (d = 3) ~

Experimental simulation%'

1.38+0.06
2.0
1.80
1.67
1.56
1.33

1.55-1.69
1.64+0.13

~Ref. 18.
Ref. 19.
Ref. 8.

dRef. 20.

'Ref. 21.
Ref. 7.

IlRef. 15.

particie aggregation (Ref. 7) could be described
by clustering of clusters with restructuring. "

The present study suggests various extensions.
The simul. ation could be compl. emented with other
approaches on the same model. " Also, it would
be interesting to consider higher dimensions (pre-
liminary results for d = 3 are analogous to d = 2:
the clusters are much more ramified than other
growth models, and D is close to the fractal. di-
mension of l.inear polymers), time dependence,
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the influence of hydrodynamic motion, and the
crossover when partial restructuring is possibl. e.
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The clusters shown in Ref. 7 have an appearance that
suggest a rather stringy structure, despite the projec-
tion from d = 3 to d= 2.

A renormalization-group calculation is under way
with encouraging results. It supports the notion that
the relative size of the coalescing clusters determines
the type of kinetic phenomena observed.
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