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A model for diffusion-controlled aggregation in which growing clusters as well as in-
dividual particles are mobile has been investigated. Two versions of the model in which
the cluster diffusion coefficient is either size independent or inversely proportional to
number of particles (mass) give very similar results. In the limit of low concentration
and large system size both models lead to structures with a fractal (Hausdorff) dimen-
sionality of about 1.45-1.5 in two-dimensional lattice-based simulations.
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Witten and Sander' have recently developed a
model for diffusion-limited aggregation which
produces complex random dendritic structures.
Numerical simulations using the Witten-Sander
(WS) model indicate that these structures have re-
markable scaling and universality properties. '
In particular, the fractal' (Hausdorff'-Besicovitch)
dimensionality D is distinctly smaller than the
ordinary Euclidean dimensionality d (for d = 2,

5)
These results have stimulated considerable

theoretical' ' and experimental interest in diffu-
sion-limited aggregation. and other growth proc-
esses. The Witten-Sander model provides a basis
for obtaining a better understanding of a variety
of diffusion-limited processes such as random
dendritic growth and the flocculation of colloidal
systems. In the original Witten-Sander model
all growth originates from a single immobile
growth site and only one particle is allowed in
the vicinity of the growing cluster at any time.
These features are unrealistic for many real col-
loidal systems.

In this paper, I investigate a related model in
which clusters of particles as well as single par-
ticles are allowed to "diffuse" and in which clus-
ters of all sizes (including single partic)es) stick
together on contact.

The two-dimensional simulations are carried
out on a simple square lattice with periodic bound-

ary conditions. At the start of the simulation, a
fraction (p) of the lattice sites are picked at ran-
dom and occupied (avoiding multiple occupancy).
Sites (particles) at nearest-neighbor positions
are considered to belong to the same cluster.
Clusters (including single-particle clusters) are
then picked at random and moved with a proba-
bility proportional to their "mobility" by one lat-
tice spacing in one of four equally probable di-

rections (+x, ~y also picked at random). If a
cluster contacts other clusters (via nearest-
neighbor occupancy), the contacting clusters are
"merged" to form a single cluster. In this man-
ner, the clusters grow larger and larger until
only one large cluster remains. Two simple
versions of the model have been investigated; in
model A the cluster mobility is the same for all
clusters and in model B the mobility is inversely
proportional to the size (number of occupied
sites) of the cluster. Other models which may be
more relevant to specific physical systems could
easily be implemented.

Figure 1 shows the final stage for several sim-
ulations carried out with a constant (mass-inde-
pendent) mobility on 400X400 lattices. The den-
sities are 0.0625 [ Fig. 1(a)], 0.093 75 [Fig. 1(b)],
0.125 [ Fig. 1(c}],and 0.156 particle per lattice
site [Fig. 1(d}]. Density-density correlation func-
tions obtained from these simulations are shown
in Fig. 2 in the form of log-log plots. At short
distances the plots of ln[C(r)] vs ln(r) are es-
sentially linear with a slope which appears to
approach a value of about —2 in the limit of low
initial particle concentrations.

For a structure with a fractal' (Hausdorff') di-
mensionabty of D and a Euclidean dimensionality
of d, we expect that the density-density correla-
tion function [C(r)] will have the form C(r) —r
where the exponent ~ is given by a =d-D, i.e.,
a is the Hausdorff codimension. Many structures
have a fractal geometry over a limited range of
length scales with "cutoffs" at long and/or short
lengths. ' In this case, it appears that the lower
cutoff length is a few lattice units and the upper
cutoff length is determined by the average parti-
cle density (p). In other words there is a cross-
over from a fractal structure (o. = ——,

'
) on short

length scales to a structure with uniform density
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FIG. 1. The final stage of simulations carried out vrith a size-independent diffusion coefficient on a 400x 400 lat-
tice. En (a) the cluster contains 10000 particles (P = 0.0625 particle per lattice site); for (b), N =15000 (p
=0.09375); for (c), N =20000 (p =0,125) ~ and for (d), N=25000 (p =0.15625).

on long length scales (u = 0) with a crossover
length 1 given by

C, & =(n}or i=((p)/C, ) "",
where C, = 1.0. As (p) -0, 1-~ and the resulting
structures have a fractal geometry on essentially
all length scales, if the present picture is cor-
rect.

In addition to the simulations used to obtain the
results shown in Figs. 1 and 2, simulations have
also been carried out at a lower concentration
(5000 particles on a 400x 400 lattice or p =0.031-
25). From seven such simulations 1 find that n
=0.516+0.029" (1 & x & 25 lattice units), u = 0.530
+0.033 (5 & r & 25), a =0.491 + 0.009 (1 & ~ & 5),
and a = 0.524+0.028 (2» r- 20). A summary oi
these results is shown in Fig. 3.

Results very similar to those shown in Figs. 1
and 2 were obtained from simulations in which

the cluster diffusion coefficient was inversely
proportional to the cluster size (number of par-
ticles in the cluster). Figure 3 shows the densi-
ty-density correlation function obtained from
simulations carried out at a density of 0.03125
particle per lattice site on a 400&400 lattice.
The results shown in this figure represent the
average of seven simulations. The Hausdorff co-
dimension n is u =0.519*0.014 (1» r & 25 lattice
units), u =0.519+ 0.037 (5 & r & 25), u = 0.493
+0.018 (1-~ & 5), and a = 0.531+0.013 (2 & r
& 20). From these results I conclude that the
limiting (low-density) Hausdorff dimensionality
is 1.45-1.5 for both versions of the model. In
Fig. 2 the dashed line with a slope of —3 repre-
sents the behavior expected for a very large ob-
ject with a fractal dimensionality of (about) —,

'
(such as a WS cluster). The dashed line with a
slope of ——,

' represents the limiting (low-density,
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FIG. 2. The density-density correlation functions
obtained from the structures shown in Fig. 1. Curve
A is obtained from Fig. 1(a), curve g from Fig. 1(b),
etc.

large-size) behavior suggested by our results.
The fractal dimensionality has also been esti-
mated from the dependence of the cluster radius
of gyration R~ on cluster size N from the rela-
tionship R~ -Ã' . Results obtained from fitting
a straight line to the dependence of in(R~) on
ln(N) for intermediate clusters formed during
the course of the simulations described above
indicate that D =1.4-1.5 for both models A and
B.

A few simulations have also been carried out
with other similar models. If only the snzalhest
cluster(s) are allowed to move, results very
similar to those obtained with models A and B
(above) were obtained (D = 1.5 in the small con-
centration limit). In this model, single particles
are removed during the early stages of the sim-
ulation and the smallest clusters become doublets
which in turn are rapidly removed leaving only
larger clusters in the system. If only the largest
cluster is allowed to move the model becomes
equivalent to the Witten-Sander model of diffu-
sion-limited aggregation in the limit p —0 (i.e.,
D= ys for d =2). If p is finite a crossover from
D=-,' on short length scales to D=2.0 on long
length scales is observed. This crossover effect
is similar to that found with models A and B.
Similar behavior has also been observed in com-
puter simulations using a modified Witten-Sander
model" and has been predicted theoretically by
Nauenberg, Richter, and Sander' for large ag-
gregates grown at a finite density of diffusing
particles.

The fractal dimensionalities of the structures
generated using these models are distinctly dif-
ferent from the dimensionalities of most other
random structures in two dimensions such as per-
colation clusters at the percolation threshold (D

FIG 3. .Density-density correlation functions ob-
tained from the final (single-cluster) stage of aggrega-
tion in simulations carried out at a density of 0.03125
particle per lattice site. Curve A was obtained from
model A (size-independent diffusion coefficient) and
curve B from model 8 (diffusion coefficient proportion-
al to 1/mass). Both curves represent the average of
seven simulations carried out with 5 000 particles on
400&&400 lattices. The dashed line has a slope of -0.53
and represents the correlation functions for a structure
with a Hausdorff dimensionality of 1.47 on all length
scales. The deviation of the correlation functions from
the dashed line at large distances (~) is due to finite-
size effects.

= 1.9)," self-avoiding random walks (D = 1.33),""
and Wiiten-Sander clusters (D = 1.67).' However,
two-dimensional lattice animals do have a fractal
dimensionality which is quite close (= 1.56)."

The models described in this paper seem to
have the same sort of universality properties as
the WS model" of diffusion-limited aggregates.
The fractal dimensionality is insensitive to the
sticking probability and the effective dimension-
ality obtained from a nonlattice version of the
model" is equal to that obtained from the lattice
models described above (within the accuracy of
the simulations). I am presently in the process
of carrying out very similar simulations using
three-dimensional lattices and related nonlattice
simulations in two and three dimensions. The
model described in this paper includes transla-
tional but no rotational diffusion. A nonlattice
model will allow both effects to be included.
Sutherland and Goodarz-Nia" have investigated
three-dimensional nonlattice models in which
clusters aggregate via linear (rather than Brown-
ian) trajectories. Their results may be inter-
preted in terms of an effective dimensionality of
about 1.85. Using a two-dimensional version of
the Sutherland-Goodarz-Nia model, I have gen-
erated fractal aggregates with a dimensionality
similar to that associated with the present model.

The process(es) simulated in this paper are
closely related to spinodal decomposition with
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very deep quenches. Under these conditions
Heerman and Klein" have found evidence that
nucleating droplets formed during Monte Carlo
simulations of nucleation and growth in Ising sys-
tems with Glauber dynamics have noncompact
(fractal) structures during the initial stages of
growth.

The model described in this paper has been
discussed with many colleagues during the past
year or so. The author would like to thank them
for their suggestions and encouragement. In
particular helpful discussions with T. A. Kitten
are acknowledged.
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