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A general class of models is introduced which relate the motion of a phase boundary to
properties of the local interfacial geometry. These systems can undergo successive de-
stabilizations as they grow, possibly giving rise to nonequilibrium spatial patterns. This
formalism has applications to a wide variety of physical problems, especially including
dendritic solidification.
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Many problems of physical interest involve the
question of how a nonlinear system dynamically
evolves in time. This is a particularly fascinat-
ing issue whenever the initial state is prepared
in a configuration which has domains that are not
absolute minima of the free energy. In this case,
the interface motion is necessarily a nonequilib-
rium problem which has the possibility of giving
rise to either chaotic final states or to intricate
patterns. A characteristic feature of these prob-
lems is the competition between long-wavelength
instabilities and a stabilization mechanism acting
at the shortest scales.

A prototypical situation is the formation of
dendritic ice crystals from a supercooled melt.
The equations which govern the growth of the sol-
id phase are the heat-diffusion equation for which
the interface motion, through emission of latent
heat, acts as a source, and the thermodynamic
boundary condition that surface tension reduces

the interfacial temperature by an amount propor-
tional to the curvature. This problem has been
studied extensively by Langer and co-workers"
over the past few years. There exists evidence
for the operation of a pattern-selection mecha-
nism wherein the growing dendrite undergoes a
series of successive destabilizations and subse-
quent restabilizations by the emission of "side
branches. " The associated hypothesis that this
sort of nonlinear limit cycle causes the system
to operate at the marginal stability point seems
consistent with experimental results. ' However,
the detailed workings of this mechanism as well
as side-branch spacings and global symmetries
are not understood. Some other systems that ex-
hibit similar competition between stabilizing and
destabilizing forces are directional solidifica-
tion, ' fluid flow in a porous material, and bio-
logical growth. '

The purpose of this work is to introduce a sim-
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pie class of models in which we believe some of
the essential features of the moving-interface
problem may be isolated and explored. The key
idea is to reduce the complicated dynamics of
the entire system which is responsible for pro-
ducing the domain structure to an equation for
the interface motion which is a function only of
the local geometry of the interface itself. In what
follows, we will show that this simplification to
a geometrical surface dynamics still preserves
a rich and varied phenomenology. In particular,
we examine a subset of models whose behavior
bears a striking resemblance to several features
of the full solidification problem.

Specifically, we assume equations of the gener-
al form

n ~ Bx/Bt =F(a, Vg. . . ),

where x is the interface position, ~ is the local
curvature, n is the outward unit normal, and V

is the covariant derivative on the surface. F is
a general function of tc and its covariant deriva-
tives. For simplicity, we will restrict the dis-
cussion here to the two-dimensional problem
where the phase boundary is just a curve. Then
V is just 8/Bs, where s is the arclength. An at-
tractive choice for 5 is

F =E(~) +y 8'~/Bs',

where the second term stabilizes the system at
short wavelengths for y &0.

Equation (1) has the important property of re-
parametrization invariance. This means that the
curve x can be arbitrarily parametrized without
affecting the physical content of the time evolu-
tion. In fact, the phase boundary is a purely geo-
metrical, stringlike entity, totally independent
of any coordinate grid used to describe it. One
consequence of this is that the tangential compo-
nent of Bx/Bt is not determined by the physics (as
contained in 5), but instead may be chosen for
convenience. An often useful choice is the or-
thogonal gauge, ' Bx(t, o)/Bt =nF, where o param-
etrizes the curve.

It is useful to rewrite the time-evolution equa-
tion (1) in terms of the curvature and the are-
length. The arclength is related to the pa. ra, m-
etrization a by ds =g'~ do, where the metric g
=x' ~ x', and the prime means derivative with re-
spect to o. Defining the curvature by K =n ' 8 x/
8s', one can easily derive

ic = —(8'/Bs'+ v')S (z), g = 2g~r.

A full discussion of these equations as well as

the generalization to three dimensions will be
presented elsewhere. '

In order to motivate a choice for E in (2), we
turn to the physics of the solidification problem.
It is easy to argue that the growth rate will be
enhanced by increasing the curvature of the sur-
face. Schematically, a local outward bulge will
allow latent-heat diffusion to occur more rapidly
than a more planar interface. Moreover, an ab-
solutely planar interface cannot move at all, oth-
er than for certain special values of the under-
cooling. Thus, I' must vanish at the origin. The
undercooling leads to an asymmetry between posi-
tive and negative curvature, suggesting a positive
term quadratic in I(.". Finally, the presence of a
minimum nucleation size constrains I to become
negative at large ~. This leads us to suggest that
solidification could be modeled by our geometri-
cal surface dynamics with F of the form

E(K) = K + GK —pK (4)

We view this resulting model as a suggestion in
the spirit of a I andau-Ginzburg mean-field ap-
proach.

Our model allows for analytic treatment direct-
ly parallel to that applied to the solidification
problem, though with significantly greater ease.
As there, an exact solution of the above model is
a circle whose radius obeys

With y = 0, stability depends on the sign of I '.
This is our analog of the Mullins-Sekerka insta-
bility. ' Nonzero y acts as a short-distance cutoff
on the fluctuation spectra, making the dominant
instabilities occur at intermediate length scales.
A comparison of this expression with the results
of the full solidification problem shows that y is
analogous to the surface tension.

The full solidification problem is known to have
a family of exact solutions in the limit of zero
surface tension. ' These dendritelike structures
translate at a constant velocity related to their

Because of our choice of I", large enough circles
will always expand. Consider, then, the stability
of such a solution. To leading order, we can set

R(O) =R, +g„a (t) cos(me),

where the initial circle is parametrized by the
polar angle 0. A standard analysis yields the in-
stantaneous growth rate
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tip radius. Similarly, for y =0 our equations al-
so possess such solutions. For the case I =~,
the profile of the solution is given by

x=p8, y =pin(cos8), (8)

where the parameter 8 is just the angle that the
normal vector makes with the y axis. Near the
tip, this curve looks parabolic with arbitrary
radius p. The velocity of translation along the
y axis is given by 1/p. A stability analysis along
the lines of Muller-Krumbhaar and Langer' leads
to the eigenvalue equation

—cos'8(5" + 5') =u&5

for the distortion 5(8) normal to the interface.
This problem can be solved exactly by transform-
ing it to a Schrodinger equation in the presence
of a kink potential. " The eigenfunctions are giv-
en by 5 - (cos8)"'P„,'"(sin8), ~ = 4+ k', where P
is an associated Legendre polynomial. All modes
grow in time, representing the instability of the
dendrite to tip splitting in the absence of a sur-
face-tension term.

For nonzero y, the situation is very different.
Perturbation theory seems to predict a relatively
insignificant steady-state shape correction. How-
ever, a direct integration of Eqs. (4) shows that
perturbation theory breaks down at large distanc-
es from the tip. " This manifests itself in the
presence af increasingly rapid oscillations in e(8)
as 8 approaches + 2m. In the strict mathematical
sense, there cannot exist uniformly translating
solutions. This leads us to conjecture that a sim-
ilar breakdown occurs in the solidification prob-
lem, contrary to earlier expectations. " Nonethe-

less, we believe it still may be useful, even for
nonzero y, to consider the linear mode analysis
around the y = 0 solution. It is straightforward to
show that there is a critical value of y/p' above
which all modes become stable. This point of
marginal stability may be relevant for the long-
time behavior of dendrites in our model, in anal-
ogy with Langer's suggestions for the solidifica-
tion problem. ' Perhaps the lack of a steady-state
solution provides a new mechanism to drive the
system to the marginally stable point.

One of the most useful features of our approach
is the ease of doing computer experiments. The
full nonlocal diffusion-limited boundary motion is
extremely difficult to treat numerically, and this
has been carried out to only a limited extent. "
Our models, on the other hand, immediately lend
themselves to simulations. We have done this by
integrating the curvature equations (3) and then
reconstructing the curve. Our programs were
checked by varying the number of points and also
by comparing the results to direct integration of
&q. (1). We will discuss the detailed results of
our simulation studies elsewhere, ' but we wish
to point out here that this class of models can in-
deed give rise to interesting structures, includ-
ing dendritic growth patterns. In Fig. .1, for ex-
ample, the initial pattern stabilizes to a circle
as it grows, but is then destabilized by (comput-
er) noise and emits irregular dendrites. Figure
2 exhibits tip splitting and in Fig. 3 the dendrite
initiates a side-branch excitation. We emphasize
that (a) these curves represent the initial stages
of growth and that (b) we do not claim that all ob-
served features of solidification are reproduced
by our specific choices of F and its parameters.
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FIG. 1. Emergence of dendrites: solution of (4) with
a=0, P=3, m=0.2. FIG. 2. Tip splitting; n = 1, P = 0.25, y = 0.25.
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convinced us that there is much to be understood
here in the way of nonlinear phenomena. While
this class of models cannot hope to reproduce all
of the intricate details inherent in a full nonlocal
approach (such as the lack of self-intersections),
we are optimistic that a detailed study of these
phenomena will provide much needed insight into
the process of pattern formation.

We would like to thank Jim Langer for gener-
ously sharing with us his insight into the physics
of these systems as well as some of his unpub-
lished results on models which are quite similar
(and in some cases identical) to the ones studied
here.

FIG. 3. Side branching; o. = 1, P = 0.25, y = 0.35.

In fact, a crucial question in solidification is the
importance of crystalline anisotropy, which may
be required for repeated side branching.

The ice-crystal problem led us to consider F's
of the form given in (2). If we turn instead to the
oscillations of a bubble of one liquid immersed
in a second, immiscible liquid (e.g. , oil in water),
we must incorporate the fact that the area of the
enclosed liquid cannot change, at least insofar
as the fluid is incompressible. This will indeed
be the case if we choose 5 of the form BV (tc)/&s

+y 8'x/Bs', where V is some function of curva-
ture. Likewise, a system whose phase boundary
moves even for planar interfaces, such as a wa-
ter flood displacing oil in a reservoir, '4 would
necessitate a term in F which would be nonzero
at ~ =0. Finally, one could attempt to formulate
more realistic models by allowing at least some
nonlocality in F. Stable crystal growth has been
studied in this manner, "and recently a model of
this sort for dendritic growth has been indepen-
dently proposed by Langer. "

In summary, our geometrical surface dynam-
ics can be used as a starting point for investigat-
ing the question of nonequilibrium pattern forma-
tion in a variety of systems. We have demon-
strated that for solidification, these models re-
produce the Mullins-Sekerka instability and the
tip-splitting behavior for the dendrite. We also
conjecture that the lack of a steady-state solution
for nonzero y could lead to a new explanation for
the marginal-stability-selection mechanism. Fi-
nally, some simple numerical experiments have
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