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Neutron stars for which the ratio 7/|1’| of kinetic to gravitational potential energy
exceeds ~ 0.08 are likely to be unstable and to spin down by gravitational-wave—driven
oscillations. A class of pulsars with nearly identical frequencies may thus result from
the collapse of accreting, rapidly rotating white dwarfs. It is likely that the fast pulsar,
PSR 1937 + 214, rotates more slowly than this, but the question remains open partly be-

cause of uncertainty in the equation of state.

PACS numbers: 04.30.+x, 04.80.+z, 95.30.Sf, 97.60.Jd

It has long been hoped that some neutron stars,
when first formed, would rotate sufficiently
rapidly to be unstable to nonaxisymmetric per-
turbations, thus providing an unusually strong
source of gravitational waves.! There is little
evidence that under ordinary conditions such
rapid rotation results from stellar collapse;
but the apparent discovery of rapidly rotating
dwarfs driven by accretion® and, recently, of
the millisecond pulsar,*? PSR 1937 +214, sug-
gests that a neutron star formed when the mass
of an accreting dwarf reaches its Chandrasekhar
limit can initially be unstable. Because the
gravitational radiation emitted by an unstable
nonaxisymmetric mode will carry off angular
momentum, the final rotation of neutron stars is
in principle limited by this instability, which, as
discussed below, appears to be important for
much smaller values of the ratio ¢=7, | W] of
rotational to gravitational potential energy than
is the case for white dwarfs.

Two striking features should characterize the
class of dwarf-descended neutron stars, if gravi-
tational radiation is in fact responsible for limit-
ing their rotation—if, that is, the magnetic field
is as ineffective in spinning down the star as
seems to be the case for PSR 1937 + 214, First,
if the accretion which drives a fast dwarf per-
sists after collapse (or if an old neutron star is
spun up by accretion?), one would expect to find
the fastest neutron stars hovering at the point of
nonaxisymmetric instability: The system should
radiate gravitational waves whose angular mo-
mentum would precisely dissipate that gained in
accretion.® On the other hand, those neutron
stars which free themselves from their source
of accretion when they form would have a siugle
limiting frequency of rotation: Their masses
would be nearly identical, corresponding to the
upper mass limit of their dwarf progenitors, and
thus their points of instability would be nearly

identical as well.

Several accreting dwarfs have observed periods
of about 30 s, and, partly because of the remark-
able stability of DQ Her (P~ 107'?), the periods
are generally interpreted as rotation.? Dwarfs
this fast cannot collapse to neutron stars without
ridding themselves of angular momentum, pre-
sumably by shedding mass, because their rota-
tion would exceed the breakup speed. A neutron
star formed from such a dwarf would initially
rotate faster than the instability limit and, if its
magnetic field were small, it would again ulti-
mately find itself at the point of marginal sta-
bility. (However, its mass would be less than
that of its dwarf progenitor, and unlike pulsars
formed by ‘“clean” collapse it would not belong to
a clearly identifiable class of objects with iden-
tical frequencies.)

The discovery that gravitational radiation
could induce a nonaxisymmetric instability in
rotating stars is due to Chandrasekhar,® who
found that the Maclaurin sequence (of uniform
density, uniformly rotating Newtonian configura-
tions) is unstable beyond the Dedekind bifurca-
tion point, where the frequency of the [=m =2
“par” mode vanishes. A more detailed analysis
of compressible, differentially rotating configura-
tions showed’ that gravitational radiation makes
all rotating, self-gravitating perfect fluids un-
stable to nonaxisymmetric perturbations. Slow-
ly rotating fluids are unstable only to modes with
extremely long growth times and short wave-
lengths (having angular behavior of the form e
with m large). As one spins up a perfect fluid
model, it becomes unstable to modes with suc-
cessively shorter growth times (and smaller
values of ). For white dwarfs, only the m =2
mode grows quickly enough to be significant and
only differentially rotating dwarfs can spin fast
enough to be unstable to it, For neutron stars,
however, modes with m = 5 could grow rapidly
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enough to be important and, because the equa-
tion of state is quite stiff, the instability appears
to limit the frequency of uniformly rotating con-
figurations as well.

We will see below that for modes with m > 5

(and probably for m =5 as well) the viscous damp-

ing time in neutron stars is shorter than the
growth time of the instability in a corresponding
perfect fluid model. Work by Detweiler and
Lindblom® on the I =m =2 mode of Maclaurin, by
Comins® on all the /=m modes of Maclaurin, and
by Lindblom and Hiscock® on the general class
of imperfect relativistic stars shows that when
dissipation due to viscosity is comparable to the
loss of energy due to gravitational radiation,
viscosity will damp out a gravitational-wave —
driven instability. Thus for neutron stars, vis-
cosity can be expected to stabilize all modes
with 7 =5, and instability of an 7 =4 mode ap-
pears to set the limit on rotation,

These points of instability have not yet been cal-

culated for realistic neutron stars models, For
white dwarfs, however, work by Ostriker and
co-workers'® showed that the value ¢t=0.14 of
T/|W| at which the I=m =2 mode of Maclaurin
becomes unstable was surprisingly insensitive
to the compressibility and to the rotation law of
the star. Although the tensor virial method they
used turned out to provide neither a necessary'’
nor sufficient™!? condition for instability, when
Durisen and Imamura'® recomputed the instabil-
ity point using a genuinely sufficient condition,
they again found only small (<7%) departures
from the Maclaurin value of £, Neutron stars
are substantially stiffer than dwarfs [for the
range of models given by Arnett and Bowers'*
the index y=1+n""=p(p+p)'dp/dp is in the
range 2 <y <3|, and in this sense they resemble
the Maclaurin models more closely than do
dwarfs. One therefore again expects the Mac-
laurin sequence to provide an approximate guide
to the value of ¢ at instability points of the long-
wavelength modes., In Table I the values of ¢ at
which modes with /, m < 5 become unstable to
radiation along the Maclaurin sequence are given.
The inaccuracy in extrapolating these results to
neutron stars should reflect the difference be-
tween the (real part of the) normal-mode fre-
quencies in Newtonian and in relativistic stars
having the same central density and adiabatic
index. A comparison by Balbinski and Schutz'®
of the /=2 mode in corresponding Newtonian and
relativistic models gives only a 9% difference in
real frequencies when GM/Rc?~0.3 and the val-
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TABLE 1. Instability points along the Maclaurin
sequence: zero-frequency modes in an inertial frame.
Here t =T/|W| and e denotes the eccentricity; for
(1, m)=(4,2), (3,2), (3,1), and (2,1), no zero-fre-
quency mode occurs.

l,m t e

6,6 0.0531 0.576
5,5 0.0629 0.617
4,4 0.0771 0.668
4,3 0.162 0.851
4,1 0.178 0.873
3,3 0.0991 0.731
2,2 0.138 0.813

ues of ¢ in Table I may provide a guide of similar
accuracy to neutron-star instability points.

A formalism adequate to compute the instabil -
ity points of Maclaurin has been available since
1889.%% Instability to gravitational radiation,
however, sets in via a mode with zero frequency
in the inertial frame, and these points held no
interest to early investigators because instability
to viscosity sets in via a mode with frequency w
=m$Q (zero frequency in the rotating frame).
Thus zero-frequency modes were apparently not
investigated until Comins® looked at the I=m
modes to verify directly that all of the Maclaurin
sequence was formally unstable to gravitational
radiation and to elucidate the combined effect of
viscosity and gravitational radiation on these
modes. He did not find exact instability points,
but rough values of the eccentricity (for the I=m
modes) can be extrapolated from his tables and
agree with the values given in Table I. Table I
was constructed by iteratively locating the zeros
of the frequency equation given by Roberts and
Stewartson, ¢ 7

From the table it is clear that the 7+ m modes
become unstable only for large values of {—in
fact, only after the bar mode is itself unstable
—and at that point the bar mode dominates.
Consequently one need only consider /=m modes,
whose e-folding times are given in the post-
Newtonian approximation by Comins’s second
paper.® From Eq. (3e) there, we have!®

_ (m=D|@n+1)11]?
T_(m +1)(m +2)(1 = e?) V2

< \*"w +(m=1)Q
R 21Gp
where p is the density, £ the angular velocity,

R the radius, and e the eccentricity of the model.
Writing K = (7Gp)™Y2[w +(m — 1) ] and using for
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e its value at the instability point gives

K c\®
T(m=2)=16 ————;—(HGH)I = R—w> ,

800K [/ c Y
T(m=3)= _ﬁ—(ncp)l - <§; ,

_6x10%K ( ¢ )9

T(m=4)= ——7—(7TGp)1 ol o

T(»1~5)"———7X106K _c->11
= _(TTG[J)UZ Rw /) *

Typical 1.4M_ models in Arnett and Bowers™
have (7Gp)¥2~10% s-! and R ~10 km, and when ¢
is within 0.03 of its value at the instability point
of a Maclaurin mode, w = %(7Gp)Y2, Then, set-
ting k=1 and w=0.5%x10% s™!, we have the follow-
ing rough values for the growth times; values
corresponding to w=10* s~! are given in paren-
theses to illustrate the large uncertainty arising
from the exponent of w: T(m=2)~10s (0.4 s),
T(m=3)~2x10%s (2x10% s), 7(m=4)~6x10" s
(10° s), 7(m=5)~2x10" s (10%s). Thus, with
each successive mode, the growth time increases
by a factor of at least 10°® (see also Ref. 5).

The damping time associated with shear vis-
cosity® is roughly 7, =(m - 1)"%(2m +1)"1R2V 1,
The kinematic viscosity v depends strongly on
temperature (v~ T72), except possibly in the
crust, where impurities may dominate electron
scattering.'® In the first years after formation,
T < 10° K in the interior and 1 cm? g™'< v = 100
cm?® g-! throughout the star. Then 10® s <7, <10
S, probably stabilizing the /=m =5 mode (cer-
tainly stabilizing all higher modes) and leaving
the /=m =4 mode as the most likely candidate
to set the limit on rotation,?

From Table I then, the point of instability is
at 1~0.08, To interpret this for relativistic
stars I will adopt the customary definition of the
gravitational potential energy, namely | W [=(1,
- M)c?, where

M,= j (1 = 2GM/rc?) " V24124

is the proper mass and M is the gravitational
mass. Then /= 3IQ% (M, ~M)c?, and the fre-
quency /27 corresponding to £=0.08 is given
in hertz by

- ‘M 1/2
Q,271=2,7x10°% LM)_U_

1/10*®* g cm?
On the expectation that dwarf-descended neutron
stars will have the baryon number of a 1.4M
dwarf, Table II gives values of Q 27 for each of

TABLE II. Frequencies of Arnett-Bowers models
for T/|W|=0.08. (Asterisks indicate extrapolation to
My=1.427_.)

Arnett-Bowers Q/2n

table (model) My/M_ M/MO (Hz)
10 (A1) 1.283 1.211 677
1.4 707*

12 (0) 1.408 1.279 914

11 (N) 1.404 1.280 950
4 (C) 1.4 1060*
1.436 1.324 1077
5 (D) 1.4 1215%
1.444 1.313 1234

6 (E) 1.404 1.266 1316

7 (F) 1.400 1.269 1341

2 (4) 1.404 1.272 1385
3(B) 1.401 1.248 1868

8 (G) 1.392 1.254 1980

the Arnett-Bowers models whose baryon mass,
M,, is 1.4M_.

The limiting frequency of rotation is clearly
strongly dependent on the equation of state used,
but the dependence on mass is relatively small,
with d1nQ/dInm ~1, The 642-Hz frequency of
the fast pulsar lies just below the range of Q for
proposed equations of state. However, the Arnett-
Bowers models are spherical, and the increase
in I due to rotation may lower by about 15%.
[For Newtonian stars of comparable stiffness,
I(t=0.08) =1,3/(t=0) and W (¢=0.08) = 0.95W (¢
=0),22 from which the estimated decrease in
follows.| Then 642 Hz would be higher than /27
for model A and within 20% of /27 for models
N and O,

One further caveat should be mentioned: The
role of the crust has so far been ignored. If it
oscillates as an elastic solid, it would be unlike -
ly to alter substantially the picture sketched
here, but as the amplitude of a mode grows, the
crust is likely to break, perhaps into plates
whose boundaries are the nodes. Subsequent
interactions (plate collisions, for example) might
dissipate enough energy to damp out the instabil-
ity, effectively limiting the pulsation amplitude.
A newly formed neutron star should spin down
in seconds to ¢ ~0,14 via the /=m =2 mode and,
as the crust hardens, in hours or days via the
I=m =3 mode. If, however, the amplitude of the
/=m =4 mode were sharply limited by the crust,
the spin-down time to £ ~0.08 could vastly exceed
the mode’s growth time (of a few years). Then,
as the star cooled, the viscosity should quickly
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increase, damping the instability within 100-
1000 yr [when T'= 10° K in the interior, v can be
as large as 10°-10° cm? g™* (Ref. 19)].

I have benefitted from conversations with a
number of colleagues, including W. D, Arnett,
G. Baym, J. R. Ipser, R. A, Managan, J. A,
Petterson, B. F. Schutz, and R. V. Wagoner.
This work was supported in part by National
Science Foundation Grant No. PHY 81-04461.
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