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A double acceptor binding three holes has been observed for the first time with photo-
conductive far-infrared spectroscopy in beryllium-doped germanium single crystals.
This new center, Be*, has a hole binding energy of ~5 meV and is only present when
free holes are generated by ionization of either neutral shallow acceptors or neutral Be
double acceptors. The Be* center thermally ionizes above 4 K, It disappears at a uni-
axial stress =10 dyn cm ™2 parallel to [111] as a result of the lifting of the valence-band

degeneracy.

PACS numbers: 71.55.Fr, 78.20,Hp, 78.20.Nv

It has been predicted,' as early as 1958, that
shallow donors can bind two electrons. The pre-
diction was subsequently verified by a series of
experiments.>”* These D~ centers have also been
used for very-far-infrared photon detection.®
Much less is known about shallow acceptors bind-
ing an extra hole. The reason for this imbalance
is not readily evident. The only published experi-
mental results deal with boron in silicon and gal-
lium in germanium.*® Theoretical work on the
behavior of D~ centers in silicon under uniaxial
stress has been published recently.®

The model used to understand D™ and A* cen-~
ters in semiconductors is based’ on the well un-
derstood, negatively charged hydrogen ion (H").
A simple effective-mass-theory approach, which
has been used successfully for the description of
shallow levels in semiconductors,® yields satis-
factory values for the binding energies of elec-
trons and holes in D™ and A* centers, respective-
ly. The main difference between donors and ac-
ceptors is that the symmetric combination of the
conduction-band minima is a twofold I'g level,
while the valence-band maximum, derived from
» states, has fourfold I'; symmetry.

Neither theoretical nor experimental results on
deep levels binding an extra electron or hole have
been reported. We present in this paper the first
experimental results on beryllium double accep-
tors in germanium binding three holes (Be*). A
simple variational calculation for the Be* analog,
a pseudo He™ ion, clearly shows that the third
hole is bound. In order to make the analogy be-
tween Be* and He™ useful, one has to remember
that the ground-state orbital of acceptors can ac-
comodate up to four holes because of the fourfold
degeneracy at the top of the valence band. A he-
lium atom or ion can only bind two electrons in
its ground-state orbital. Resorting to electrons
with a hypothetical spin %, this difficulty can eas-
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ily be overcome.

All of our experimental results were obtained
with samples taken from large cylindrical crys-
tals of beryllium-doped germanium. Several
crystals were grown from a melt contained in a
graphite susceptor in vacuum (< 10™° Torr) with
use of the Czochralski method. Doping was
achieved by adding an appropriate amount of a
highly doped, polycrystalline master alloy of
Ge: Be to the melt. The crystal axis was in all
cases parallel to the [113] orientation. The be-
ryllium concentration Ny, varied between 2x 10
cm”™® and 2x 10" cm™3, Variable-temperature
Hall-effect measurements established that the
residual net shallow-acceptor concentration N,
was between 10 and 10*® em™3, The information
on the shallow-center concentrations is crucial
for the interpretation of the infrared data in the
latter part of the paper.

The samples used for low-temperature, far-
infrared photoconductivity measurements were
7x Tx 3-mm? right-angle prisms, cut from the
Ge: Be single crystals, lapped with alumina, and
polish-etched in a 3:1 HNO,;: HF mixture for 2
min. A thin layer of In-Ga eutectic rubbed onto
two opposing 7x 3-mm” faces served as satisfac-
tory contacts. A far-infrared Fourier-transform
interferometer used at a resolution of 1 cm™*
provided ir photons in the 10 to 250 em™! range.
A number of Mylar beam splitters and warm as
well as cold filters were used to define and opti-
mize the appropriate photon energy ranges.

Figure 1 shows a series of photoconductivity
responses for sample temperatures between 4.2
and 1.2 K. The sharp onset of photoconductivity
at ~80 ecm™?! is caused by the ionization of shallow
aluminum and boron acceptors. A set of cold fil-
ters blocks all the photons above 95 cm™! which
makes ionization of neutral-beryllium double ac-
ceptors impossible. With decreasing tempera-
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FIG. 1, Photothermal conductivity as a function of the
photon energy for a Ge:Be sample at four temperatures,
The cutoff at ~ 95 cm~! is due to a set of room-tempera-
ture filters which irradiate the sample with blackbody
radiation leading to ionization of shallow acceptors,

i.e., free holes.

ture one observed a long-wavelength response
rising sharply at ~40 em™! and gaining in inten-
sity. The presence of shallow neutral acceptors
leads to clearly visible absorption lines® at 66.7,
68.0, 72.8, and 74.1 cm™'. There are no signs of
excited-state transitions close to the 40-cm™!
response, as are always observed for shallow
acceptor or donor photoconductive responses.
This seems to suggest that there are no optically
accessible excited bound states in the system
responsible for the 40-ecm™! structure.

We propose that the long-wavelength response
is due to photoionization of Be* centers. Support-
ing evidence comes from the following experi-
mental observations: (a) No Be* response was
observed when the photon energy range was lim-
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ited with a cold (T < 4.2 K) 50-cm™ ! low-pass fil-
ter; (b) when the same filter was used at room
temperature the Be* response reappeared. The
explanation for this lies in the fact that the warm
filter irradiates the Ge: Be sample with a broad-
band, continuous photon flux which can ionize
shallow as well as deep acceptors, thereby creat-
ing free holes, some of which are captured by

the abundant Be® centers. The cold filter on the
other hand does not lead to ionization and free
holes. In a further experiment a germanium sam-
ple was counterdoped with shallow lithium donors
to the point where Ny <N, <« Ng.. This sample did
not show the shallow acceptor nor the Be* re-
sponse. Only when photons with an energy suffi-
cient to ionize neutral Be acceptors were admit-
ted did the Be* response reappear. This observa-
tion is consistent with the requirement that free
holes must be present in order to create the Be*
centers. An additional fact which supports our
identification of the center as Be* is that it can
always and only be created and observed in be-
ryllium-doped germanium crystals.

An excellent test for the validity of our Be* (or
He™) model can be obtained with a uniaxial stress
experiment. Stress in the [111] direction pushes
the light hole band through the heavy hole band.
The fourfold degeneracy at the top of the valence
band is lifted and the ground-state orbitals of any
acceptor can only accommodate two holes. The
Be® response, therefore, must vanish under suf-
ficiently high uniaxial stress. Figure 2 shows
precisely this behavior in a sequence of spectra
taken at increasing stress.

Summarizing the experimental results, we have
observed the long-wavelength photoconductive re-
sponse starting at 40 em™?! in all beryllium-doped
germanium samples at temperatures below T
=4.2 K when free holes were present. It is not
important whether the free holes are created by
ionization from shallow residual acceptors or
from the deep beryllium centers. The Be* cen-
ter disappears at a uniaxial stress = 10° dyn em”
parallel to [111] as a result of the lifting of the
valence-band degeneracy.

An independent-identical-orbital variational cal-
culation with a single, simple exponential func-
tion' yields (in units of m*e*/€%, where m* is
the effective mass and € is the dielectric constant)

E(H0)=—0.500; E(H")=-0.473;
E(He*)=-2.000; E(He®=-2.848;
E(He )=-2.836,
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FIG. 2. Photothermal conductivity of a Ge:Be sample
at 7=3.5 K under stress parallel to [111], The respons-
es at ~40 cm~! and ~195 cm™! are due to Be* and Be’
centers, At high stress the Be* response vanishes and
the aluminum and boron continue to become visible.

It corresponds to both unbound H™ (which is well
known to bind) and slightly unbound pseudo He".
A better calculation involving symmetrized
products of two or three single-exponential orbit-
als!! yields
E(H°)=-0.500; E(H )=~0.514;
E(He*)=-2.000; E (He®=-2.876;
E(He )=-2.988,
It gives bound states for both H (binding energy,
0.014; experimental value, 0.028) and pseudo He~
(binding energy, 0.112),
The experimental observables are the energy
differences between subsequent ionization stages.

If the He" to He® transition is equated with the ex-
perimentally® established Be~ to Be’ transition

energy of 24.5 meV (m*e*/€fi=28.0 meV), we get
estimates for both the Be™~ to Be™ (variational
calculation, 56.0 meV; experimental value, 58.02
meV) and the Be® to Be* (variational calculation,
3.3 meV; experimental value, 5.0 meV) transi-
tions. Given the extreme simplicity of the varia-
tional calculation, we are satisfied with the agree-
ment between theory and experiment.

It should also be remarked that, as in the case
of H™, the pseudo He" system does not possess
excited bound states,” in agreement with the ex-
perimental observations.

As a final remark we want to point out that pre-
liminary results with copper-doped germanium
show that Cu* centers (four holes bound to a trip-
le acceptor) do exist. Furthermore, we are in
the process of evaluating whether the Be* centers
can be utilized as very-long-wavelength infrared
detectors.
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this work could not have succeeded. We are
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lations.
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