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Surface Undulations in Explosive Crystallization: A Thermal Instability
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It is argued that surface undulations observed after self-sustained rapid crystallization
of amorphous films result from a thermal instability that induces a periodically varying
crystallization rate. Its physical origin is discussed for a simple nonlinear heat-conduc-
tion model which yields good agreement with experimental observations. A numerical
analysis of the nonlinear oscillations shows that these may, in turn, bifurcate via a series
of period-doubling bifurcations.

PACS numbers: 61.50.Cj, 64.70.Kb, 68.55.+b

Recently there has been much interest in insta-
bilities occurring during crystal growth, particu-
larly those leading to dendritic growth and the
morphological instabilities of the crystal-melt in-
terface. ' Here we analyze a much simpler ther-
mal instability which can explain phenomena ob-
served during the rapid crystallization of meta-
stable amorphous films when initiated by a laser
pulse or by impact with a stylus.

Under appropriate experimental conditions, lay-
ers of amorphous Sb,"Ge, ' Si,' and other ma-
terials' can "explosively" crystallize, the speed
of the crystallization front being of the order of
meters per second. Since crystallization rates
are strongly dependent on temperature, it was
realized long ago that this phenomenon is associ-
ated with the temperature rise induced by the la-
tent heat liberated in the amorphous to crystal-
line (a-c) transition. If the latent heat liberated
is too small or the heat loss too great, the crys-
tallization wave cannot sustain itself and dies out.
One then has to initiate the process repeatedly by
scanning the layer with a laser beam. "'"

In materials like Sb,"Bi,' or Yb, ' on the other
hand, self sustained cry-stallization waves have
been observed that propagate through the whole
layer after being initiated at a single spot. In
several of the latter experiments the crystalline
phase exhibits periodic variations in the height of
the layer. " Far from the initiation point, the
structure is essentially one dimensional, resem-
bling a frozen-in pattern of parallel water waves
near a beach. The experiments of Wickersham,
Bajor, and Greene' suggest that these undulations
are induced by a thermal instability. Here, we
argue that they indeed result from an instability
of a steadily advancing a-c front to one with an
oscillating growth rate.

In view of the experimental observations, we
analyze the propagation of a straight front, ne-

glecting temperature differences in the vertical
and lateral directions. In the laboratory frame,
the propagation is taken to be in the positive x'
direction; it is more convenient, however, to use
the coordinate frame x =x' —f 'dt' V(t') comoving
with the front so that the a phase is at x & 0 and
the c phase at x&0. Here V is the interface veloc-
ity or growth rate. Using this frame, we follow
Gilmer and Leamy" and assume a balance equa-
tion of the form"

BT 8 T Bg=~ —,+V ——r(T-T')+qV~(x).
ex x

The first term on the right hand side gives the
heat conduction through the layer (Ir is the ther-
mal diffusivity, assumed for simplicity equal in
the a and c phases); the second term results from
the transformation to the moving frame; the third
one crudely describes the heat loss to the sub-
strate at temperature T'. The fourth contribution
is the source term due to the latent heat LV liber-
ated per unit of time and area at the a-c boundary
(if C is the specific heat per unit volume, q = L/
C). The boundary condition for T is T(x, t)- T'
for x ~+ ~.

Equation (1) becomes nonlinear through the de-
pendence of V on the temperature. Following
standard practice, "we assume that V is an ex-
plicit function only of the a-c boundary tempera-
ture T'(t) =T(x =O, t),

V= V(T (t)).

For concreteness, we consider a dependence of
V on T' as observed for crystal growth from a
melt" (Fig. 1). The a-c growth rate is thought to
be of a similar form, but precise data are only
available on the low-temperature side where V

~exp( Q(kT)." It-is precisely on this side
where the thermal instability discussed below oc-
cur s.
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horizontal axis) reaches some value between 3
and 2+/5=4. 236. This is an oscillatory instabil-
ity: For values of the slope larger than the criti-
cal value, the boundary temperature and speed
of the front oscillate periodically in time (see in-
set, Fig. 1). Successive period-doubling bifurca-
tions will be discussed later.

Having understood the stability, it remains to
understand the physical origin of the oscillations.
In the steady state, when Eq. (5) reduces to Ixl
= V „v, the main contribution to the integral (4)
comes from those positions x for which Fv. +x'/
4e7 & 2, or ~ & 2/(I'+ V„'/4n) = v . Thus, contri-
butions to T' from the heat released at positions
further back than d = V„~ are essentially negli-
gible; v sets the time scale over which changes
in T' take place and becomes shorter the larger
the velocity is. To understand the oscillatory
solutions, consider a small perturbation with an
increased velocity around a steady-state solution
in the case of small damping (F«V„'/4n).
small decrease in ~ makes a Gaussian 7'"
x exp(-y'/4~) narrower: The center increases
whereas the wings at ly i & (2v)"' decrease. For
the (slightly damped) Gaussians in the integrand
of Eq. (4) with !xi &2~/V„=d /4 the perturbation
therefore results in an increase of T', while it
decreases the contributions of those at distances
further away. " Thus, when the growth rate
speeds up, the boundary can move ahead so rapid-
ly that the heat diffusion from positions not im-
mediately behind the boundary is not able to keep
up. Consequently, T'' and the front velocity drop,
after which more heat diffuses towards the bound-
a.ry, and the velocity can rise again.

There is evidence' that the surface undulations
are accompanied by variations in grain size and

in the extent of completeness of the a-c transfor-
mation (there are considerable density differenc-
es between the a a.nd c phases). It is quite natu-
ra, l to expect that the predicted oscillations in V

and T could give rise to such variations in the
crystallization process, and hence induce the sur-
face undulations. Moreover, our predictions
agree well with the following observations of Wick-
ersham, Bajor, and Greene': (i) Since the time
sca1.e is set by ~, we expect the period of the os-
cillations to be of this order. The linear stability
analysis confirms this, and in the experimentally
relevant case where I «V„'/4v, we find for the
wavelength x of the undulations x= w V„=8K/V„.
Here V„is the average velocity. This result is
in good agreement with the experimental values
measured. " (ii) Let T* be the substrate temper-

ature above which self-sustained explosive crys-
tallization is possible. For T slightly above T*,
say T'=T,', as shown in Fig. 1, the slope at B,
is steep and the growth rate will oscillate. If T'
increases to T,', say, the point B, becomes sta-
ble. Thus, in our model, the oscillations occur
for T' slightly above T* and cease at higher tem-
peratures, much like the experimental observa-
tion that the "surface roughness was found to de-
crease as the triggering temperature was in-
creased above T*."'

A numerical analysis of the nonlinear periodic
oscillations given by Eqs. (1) and (2) shows that
these, in turn, bifurcate via a sequence of peri-
od-doubling bifurcations" when the substrate
temperature is lowered. One solution with a pe-
riod twice the basic period ~ is shown in the in-
set of Fig. 1. Such solutions occur if the velocity
comes close to the maximum of the growth-rate
curve (2). These Feigenbaum sequences" have
been analyzed mostly in models with a finite-di-
mensional phase space. The model studied here
for the "infinite-dimensional" temperature field
is simple enough to permit a detailed numerical
analysis. Furthermore, in the region in Fig. 2

where the solid and dashed lines cross, the non-
linear behavior of the model can be studied ana-
lytically by making use of the theory of codimen-
sion two bifurcations. These results will be dis-
cussed in a future publication.

We are grateful to G. H. Gilmer, P. C. Hohen-
berg, K. A. Jackson, and D. S. Fisher for helpful
discussions.
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