
VOLUME 51, NUMBER 12 PHYSICAL REVIEW LETTERS 19 SEPTEMBER 1983

Gravitational Radiation Reaction in the Binary Pulsar and the Quadrupole-Formula Controversy

Thibaut Damour

Groupe d'Astrophysique Relativiste, Observatoire de Paris-leudon, E-92195 Meudon Principal Cedex, France
(Received 31 May 1983)

The evolution of the orbit of a binary pulsar under the action of gravitational radiation
reaction is calculated. No approximation is made of weak gravity inside the individual
stars; the details of the orbital motion are given directly (to order c and G3). The cal-
culation reveals no acceleration of the center of mass of the system, and a secular de-
crease of the time of return to periastron. The quantitative results agree both with the
well-known "quadrupole formula" and with observations.

PACS numbers: 04.20.Me, 04.80.+z

In recent years, the discovery of binary pul-
sars' and the report' of the measurement of a
secular acceleration of the orbital motion of PSH,
1913+16has fueled a lively controversy' about
the applicability to such systems of several
"quadrupole formulas" which, on one hand, have
been derived' from general relativity with very
unequal levels of rigor and completeness, and

which, on the other hand, have both different
physical meanings ("gravitational energy flux"
at infinity, "radiation reaction, " . .. ) and differ-
ent domains of validity. Postponing the discus-
sion of the pure mathematical rigor of the exist-
ing derivations (none being absolutely satisfac-
tory from this point of view), I wish to emphasize
here that none of the existing derivations, except
the one outlined below, meet, at the same time,
the two following requirements which are, how-
ever, indispensable if one wishes to compare the
theoretical predictions with the observations":
(i) The derivation should apply to comPact bodies
(radius —Gm/c', which implies strong internal
gravity), and (ii) one should compute the direct
effect of the nonlinear retarded gravitational in-
teraction on the absolute orbital motion of a
member of a binary system. Few attempts have
been aimed at meeting the latter requirement. '

The derivation presented here relies on recent
results' ' based on a new method' especially
tailored for computing the third-post-Minkowsk-
ian gravitational field outside two compact bodies
and for deducing therefrom (by an improved Ein-
stein-Infeld-Hoffmann-Kerr-type approach) the
equations of motion of the two bodies. The latter,
manifestly Poincard-invariant, retarded func-
tional equations of motion have been computed
and then transformed into ordinary differential
equations while keeping all the post-Newtonian
corrections up to the fifth order in c ' where
time-irreversible effects show up. This was

achieved by carrying out the first (order G),
second" (order G'), and third" (order G') iter-
ations of Einstein's equations. The necessity of
considering the third iteration for dealing with
gravitationally boun~ systems had been known
for a long time. ' It has been shown recently '
that the same is true even when computing the
net mechanical energy loss during small-ang~e
scattering. For both cases the correct mechan-
ical energy loss was first derived in Ref. 8 and
shown to confirm the expected "quadrupole formu-
la. " However, as stressed in Ref. 9, even such
a mechanical energy-loss formula is still gross-
ly insufficient for controlling the full kinematical
behavior of the binary system as is done below.

A full knowledge of the orbital motion of a
binary system can be obtained in three steps:
(I) reducing this two-body problem to a one-body
problem; (2) solving the latter one-body probl'em
when the terms of order c ' are neglected (these
terms will be seen, a Posteriori, to play the role
of "radiation reaction terms"); and (3) solving
the full problem by means of the method of varia-
tion of arbitrary constants. Some technical de-
tails of this approach, which makes use of previ-
ous results (Damour and co-workers' '), follow;
the final result is discussed in the last two para-
graphs.

The first step towards solving the equations of
motion, complete up to order c ', of a binary
system" consists in proving a generalization
of the center of mass theor-em -valid up to order
c ' inclusive. Such a generalization has been
shown to hold, up to order c 4, in Ref. 7, where
six first integrals (up to c ~) of the binary sys-
tem, P«~

' and K&4&', generalizing the total linear
momentum and the center-of-mass constant,
were constructed (i = I, 2, 3). If we introduce

P, '=~ G'mm'(m —m')[V'-2G(m+m')/A]ft '&'
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G, '= -~5Gmm'(m -m')[ V -2G(m+m')/RJ V'/(m+m')

(Z'=z'-z", V'= v' —u", R =!Z'!), a, straightforward calculation shows that P&, &' =P&4-&'+c 'P, ' and

K~, &'=-K«&'+c '(G, '- tP, ') are constant (modulo c '). Then, by a suitable Poincare transformation,
we can choose a frame of reference where both P&» and K(, &

are zero (center-of-mass frame). In this
frame one can express the position and velocity of the second body (the "companion") in terms of the
position and velocity z and v of the first body (the "pulsar" ). In this frame one can write autonomous
equations for the motion of the first body:

dv/dt = Bo(z) +c 2B2(z, v) +c ~B,(z, v) +c 'B,(z, v) + 0 (c 6),

where Bo'(z) =-Gm "(m+m') !z! 'z'. In order
to integrate Eq. (1) we start by considering the
following auxiliary differential system:

dv/dt = Bo(z) +c 'B2(z, v) +c ~B~(z, v) . (2)

It has been shown' that the equations of motion of
the binary system admitted, under neglect of
terms of order c ', ten first integrals: P«)',
K«&' (quoted above), and E«&(z, z', u, v'), J«&'(z,
z', v, o'). Replacing in the last four quantities z'
and v' by their "center-of-mass" expressions in
terms of z and v and subtracting all the terms
of formal order c ', we end up with four first
integrals (modulo c ') of the differential system
(2): c, =E«&(z, v), c, '= J«&'(z, v). Moreover the

explicit vectorial structure of c, ' shows that the
(fictitious) motion (2) takes place in a plane. We
can therefore introduce polar coordinates r, zo

such that z'=(rcosw, & isn't, 0). The knowledge
of the first integrals c, and c, = (c,'c, ')' ' yields
the following equations for r(t) and w(t):

(dk/dt)~ = R(&, c i, c2),

dw/dt= G(r, c„c,),
(3)

(4)

where A and G are polynomials of the fifth de-
gree in 1/r whose coefficients are polynomial in
c, and c, and rational in m and m'. Equations
(3) and (4) can be solved by means of two quadra-
tures. In order to take full advantage of this
solution [to Eq. (2) J for integrating Eq. (1), it is
convenient to introduce several new quantities
and functions. One can prove that if 2(m+m')c, c,'
( —G~(mm')' the polynomial &'R(~) admits two
and only two real roots, ry & r2 which have non-
zero limits when c ' -0. Let us then define

P (c„c,) = 2[ dr[R(r, c„c,)]-'~',

P (ci, c2}/q(c~, c2)

= m 'f drG(r, c„c,) [R(x, c„c,) J

Let us also define a hypexelliptic function S(l, c.)
(a =1, 2} by inverting the incomplete hyperellip-

! tie integral: l = (2m/P) f dh R '~'. Moreover let

8'(l, c,) =(P/2~)g dx(G(S(x, c.), c, ) —2n/qj

Both functions S(l } and W(l) are C" and periodic
in I (period 2»). The solution to Eqs. (3) and (4)
can be written as

r=S(l, c„c,),
u& =m+ W(l, c„c,),

(5)

(6)

with l = 2&t/P(c „ca)+co, and m = 2»t/Q(c „c,) +c,.
In this manner we have succeeded in expressing
the solution of the auxiliary system (2) in terms
of the time t and of four constants c„(A= 0, 1, 2,
3). We can now integrate the actual equations of
motion (1) by applying an "improved" method of
variation of arbitrary constants. We look for
solutions to Eq. (1) which have the functional
form (5) and (6) (together with the corresponding
velocity expressions) but with variable c „(t) and

with the following "improved" expressions for
the "relativistic anomalies" l and m:

l = 2vJ du[P(c, (u), c~(u)) J '+c,(t), (7)

m =2»'J du[Q(c, (u), c,(u)) ] '+c,(i). (8)

One can then prove that this is possible and that
the c„(t) have to satisfy some evolution equations
of the type dc„/dt = c 'E~(l, c~) where the func-
tions F„(l) are periodic in / (period 2»'). There-
fore if we restrict our attention to the evolution
of the c„'s over a time scale «c'P/v', we can
prove that each c „(i) is equal to a term periodic
in time [period P(c, ') J and a, secular term,
linear in time: k„t, where each k~ is given by
a complete hyperelliptic integral:

[2/P(c, )]f drK„(r, c, )[R(r, c,o)]

c.' = c.(0) .
The knowledge of the k„'s, together with Eqs.
(5)-(8), is sufficient for determining the secular
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effects in the orbital motion. For instance from
Eq. (5) and the definition of the function S(l) one
sees that r will reach its (slowly cha, nging) min-
imum value x„ i.e., that the first object of the
binary system will pass through its periastron,
each time l(f) is equal to a multiple of 2w. It is
then easy to deduce from Eq. (7) that the date of
the Nth periastron passage is

tn = to+(Po '+ko/2&) 'N +2PoPQ

where P, =P-(c, ', c,') and where

c, C2

The explicit computation of Po leads to evalua-
tion of several complete hyperelliptic integrals.
However, one can prove rigorously that the latter
integrals are well approximated (when ~ «c) by
simpler circular integrals. The final result is

192m 2v G mm'
Po= o ~, 1)us (I+ sc eo + Poc5c Po (rn +m

where e, denotes [I + 2(m+ m')c, '(c,')'/G'(mm')'J'~
It is to be stressed that in this approach' each
parameter m or m' is the "Schwarzschild mass"
of each compact object, when isolated, and not
the integral of some Newtonian density which
would be a poor numerical approximation to the
"Schwarzschild mass. " This is one of the rea-
sons why most of the post-Newtonian derivations
of the "quadrupole formula" are of doubtful appli-
cability to the case at hand.

Because it has been proved above that the cen-
ter of mass of the system is unacc lerated and
because in this post-Minkowskian approach' the
coordinate time I, is a proper time far away from
the system, we can conclude that the theoretical
quantity P„Eq. (9), which measures the secular
decrease of the time of return to the periastron,
must be identified (modulo a constant Doppler
factor close to unity) with the observational quan-
tity denoted by P, in Ref. 2. Similarly it can be
proved that the present e, is, within the accuracy
now available, to be identified with the observa-
tional parameter e. The same is true for the
two masses: m = m~, m ' = m, .

I have therefore proved by directly solving the
equations of motion of two compact bodies in gen-
eral relativity that the absolute orbital motion of
each of the bodies should exhibit, when seen
from far away, the secular acceleration P, given
by Eq. (9). This result agrees both with the
standard, heuristically predicted"" "quadrupole
formula" and with the observations of the .Hulse-
Taylor pulsar. ' Note, however, that this deri-
vation, the details of which will be published
elsewhere, never had to make use of such con-
cepts as quadrupole moment, energy flux at in-
finity, balance equations, energy, angular mo-
mentum, or radiation damping force.

I wish to thank K. S. Thorne for helpful sugges-
tions toward improving the wording of this paper.

4)(I + 2)- 7/2 (9)

'R. A. Hulse and J. H. Taylor, Astrophys. J. Lett.
195, L51 {1975).

2J. H. Taylor, L. A. Fowler, and P. M. McCullough,
Nature (London) 277, 439 (1979).

3J. Ehlers, A. Rosenblum, J. N. Goldberg, and
P. Havas, Astrophys. J. Lett. 208, L77 (1976); A. Ro-
senblum, Phys. Rev. Lett. 41, 1003 (1978); F. I. Coop-
erstock and D. Hobill, Phys. Rev. D 20, 2995 (1979);
K. S. Thorne, Rev. Mod. Phys. 52, 285 (1980); M. Walk-
er and C. M. Will, Phys. Rev. Lett. 45, 1741 (1980);
J. L. Anderson, Phys. Rev. Lett. 45, 1745 (1980);
A. Rosenblum, Phys. Lett. 81A, 1 (1981); P. Havas,
to be published.

References up to 1982 can be found in Gravitational
Radiation, edited by N. Deruelle and T. Piran {North-
Holland, Amsterdam, 1983); see also T. Futamase and
B. F. Schutz, to be published.

'Among them: S. F. Smith and P. Havas, Phys. Rev.
138, B495 (1965); M. Carmeli, Nuovo Cimento 37, 842
(1965); A. Papapetrou and B. Linet, unpublished.

6L. Bel, T. Damour, N. Deruelle, J. Iba6ez, and
J. Martin, Gen. Relativ. Gravit. 13, 963 (1981).

~T. Damour and N. Deruelle, Phys. Lett. 87A, 81
(1981), and C. R. Acad. Sci., Ser. B 293, 537, 877
(1981).

T. Damour, C. R. Acad. Sci., Ser. B 294, 1355
(1982).

~T. Damour, in Gravitational Radiation, edited by
N. Deruelle and T. Piran (North-Holland, Amsterdam,
1983), and in "Proceedings of the Third Marcel Gross-
mann Meeting, Shanghai, September 1982," edited by
Hu Ning (Science Press, Princeton, ¹J., to be pub-
lished).

A. S. Eddington, Tke Mathematical Theory of Rela-
tivity (Cambridge Univ. Press, Cambridge, England,
1924), 2nd ed.
"P. C. Peters and J. Mathews, Phys. Rev. 131, 435

(1963).
'2R. V. Wagoner, Astrophys. J. Lett. 196, L63 (1975).

2

The Groups d'Astrophysique Relativiste is Equipe
de Recherche du Centre National de la Recherche
Scientifique No. 176.

1021


