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Angular Distributions of Neutrals Desorbed by Electron Impact
from Chemisorbed and Physisorbed Layers on Metal Surfaces
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Angular distributions of neutral CO desorbed by electron impact from chemisorbed CO
on Ru(001), and of neutral N, O and Nz from chemisorbed and physisorbed N&O on Ru(001),
have been measured and compared to angular distributions of desorbirg ions. All distribu-
tions are peaked around the surface normal. Angular widths of neutrals are generally
broader than those of ions, but are much narrower than for thermal desorption, and show
large differences. The results are discussed in terms of mechanisms of ionic and neutral
des orption.

PACS numbers: 68.45.Da, 79.20.Kz

The most abundant products of desorption in-
duced by electronic excitations stimulated by
electron impact, or photon absorption —in adsorp-
tion layers on metal surfaces are neutrals, for
all systems investigated so far. ' Nevertheless,
most investigations to date have been concerned
with positive ions because of the ease of detec-
tion,' also, most published theoretical considera-
tions place their main emphasis on mechanisms
of ion formation. Specifically, the angular distri-
bution of desorbed ions' has been used to draw
conclusions about bond directions in adsorbates.
Here we report the first measurements of angu-
lar distributions of desorbed neutrals for two sys-
tems containing chemisorbed as well as physi-
sorbed molecules. We report on rather broad
variations of the angular widths and discuss their
origin in connection with the probable mechan-
isms and desorption channels.

The experimental setup consists of a single
crystal positioned in front of a small aperture in
a glass cap covering a mass-spectrometer (MS)
ion source, ' inside a UHV chamber. The crystal
is rotatable around an axis in its surface, and
an electron gun rotating with it aims at the cen-
ter of the crystal facing the aperture; the polar
distribution of particles leaving the surface can
thus be swept over the detector aperture, with
constant angle of incidence of electrons. Angular
resolution is about 5 . The electron beam is
chopped at 20 Hz and the MS output at a certain
mass is processed through a lock-in amplifier.
Several angular scans are added together, each
with a newly prepared adsorption layer for min-
imal desorption-induced changes (& 5%). Detec-
tion efficiency is limited by the background of the
residual gas and is greatest for particles not
abundant there. For the abundant CO, desorbing
fluxes cor responding to 10 "mb we re detected

at a background of some 10 "mb; the use of a
capillary doser minimized the latter. Secondary
electrons and ions from the surface were kept
away by suitable potentials. Because of intensity
reasons, electron energies between 200 and 800
eV were used. The ion angular distributions men-
tioned were obtained in a similar system de-
scribed in Ref. 4.

So far we have investigated the systems CO/
Ru(001) ' and N,O/Ru(001)." For CO, a single
bonding mode exists throughout the coverage
range whose properties are only modified by
lateral interactions; at a coverage of 0=0.33 all
molecules are equivalent, occupy on-top sites,
and are ordered in a v 3 array up to desorption.
In the N, O system, both chemisorbed and physi-
sorbed species are formed at sufficiently low
temperature (T, & 90 K), and coexist in the satu-
rated layer. Stepwise heating to 125 K can be
used to isolate the chemisorbed one.

For CO/Ru(001) the only electron-stimulated-
desorption (ESD) neutral detected was CO. ' Fig-
ure 1 shows an angular scan for 6I = 0.33 and T,
=200 K. No dependence on surface temperature
(from 140 to 310 K), coverage (checked at 8
=0.33 and 0.66), electron energy (from 200 to
800 eV, i.e., below and above the C 1s and 0 is
thresholds), or azimuth was observed within the
error limits. The half-width is seen to be 55,
i.e. , less than half that of a cosine distribution.
Angular distributions of ions liberated under
roughly the same conditions were much narrower,
with about 16' for CO' and 18' for 0+ (Ref. 9);
they do show some dependence on coverage and
temperature which will be described elsewhere.

From N, O layers neutral signals were seen at
masses 44 (N,O), 30 (NO), and 28 (N, ) (Fig. 2).
As the N,O and NO signals varied in parallel and
we re related as the c racking ratio f rom gas-
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FIG. l. Angular distributions of ESD neutral CO
(CO, T, =140 K) and CO+ (T~ =120 K), compared with
a cosine distribution. Full half-widths are indicated.

Mass 44

phase N,O, they are both due to desorbing N,O.
From chew'sobbed 8,0, the full half-widths for
masses 44 and 30 are, at 28, quite narrow. For
comparison, NO' and 0' ions with half-widths of
24 and 13 were seen. ~ much broader distribu-
tion (65 ) resulted for neutral N, under the same
conditions. From physisorbed N,O, the angular
width of N,O was more than twice as large as
from the chemisorbed layer; no N, or ionic de-
sorption was seen from it. For comparison,
pointwise measurements for thermally desorbed
N,O from the same layers were compatible with
a cosine distribution.

These examples show a rather broad variation
of angular widths of induced desorption. As the
angular widths are mainly determined by the po-
tential-energy surfaces sampled by the desorbing
particle, "we expect them to contain information
on the channels and possibly even the mechan-
isms of desorption. One might expect that dif-
ferent~r similar widths (of the same product
from different states, or of corresponding neu-
tral and ion from the same adsorbate) are indica-
tive of different~r similar —--desorption chan-
nels followed by the respective particles. How-
ever, closer scrutiny shows that this is not the
case. Since no influence of core excitations has
been seen for neutral desorption, both in energy
dependences" and in the angular widths in this
work, we use the standard Menzel-Gower-Red-
head mechanism"'" of ESD for this discussion
and consider only primary valence excitations of
one-hole or one-hole-one-particle nature for
simplicity (the involvement of two-hole states
should not lead to qualitative changes). Neutrals
can then desorb either by (direct or indirect)
excitation to an antibonding excited neutral state
of the adsorbate complex, or by neutralization
of an initial ionic excitation; ions will always
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FIG. 2. Angular distributions of ESD neutrals from
N20/Ru(001). From top: NO, N&O, N2 from chemi-
sorbed N, O (T, = 90 K, after heating to 125 K}; bottom:
N&0 from physisorbed N20 (T~ =90 K).

stem from the second type of excitation. In the
first case very different potential-energy sur-
faces are followed by desorbing neutrals and ions,
so that their angular widths could be different.
While this could possibly explain the width dif-
ferences between CO' and CO', we do not think
so. Not only would this contradict our earlier
conclusions from threshold measurements" that
neutralization of desorbing CO' is an important
channel for CO' (this could be due to the differ-
ent electron energies), but a purely repulsive
neutral state would be expected to have a rather
high slope in the Franck-Condon region and to
result in a narrow angular distribution contrary
to observation. On the other hand, desorption
of neutrals via ionic excitations comes about by
crossing of the ionic and the neutral curve (Fig.
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tion of angular widths, and that they can give
clues as to the mechanisms operative. We argue
that neutrals produced via, neutralized ionic exci-
tations should have much broader angular dis-
tributions than the corresponding ions, while
neutrals formed via repulsive neutral states
should have narrower widths, and we use these
concepts for the assignment of observed proc-
esses. For neutral desorption of physisorbed
molecules, electronically induced vibrational
predissociation is proposed as a possible mech-
a,nism
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