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The author reinterprets Witten's analysis of the dyons in the SU(2) Georgi-Glashow model,
showing that his peculiar formula for their electric charge is due to a symmetry of the semi-
classical configuration space under the noncompact group of real numbers. This method of
analysis extends easily to.the SU(5) dyons and shows that their color hypercharge is also
arbitrary when the vacuum angle 0 is nonzero.

PACS numbers: 14.80.Hv, 11.15.Ex, 11.30.Ly

In this Letter I shall discuss the semiclassical
quantization of the fundamental. SU(5) monopoles
of Dokos and Tomaras. To begin, let us briefly
recall the application of the method to two sys-
tems in quantum mechanics, both with cl.assical
energy E = —' r2'+—'( 1/e') V( er), where V is as shown
in Figs. 1(a) and 1(b). The first system is of in-
terest because it models the behavior of the vac-
uum states in gauge theories, while the second
wil. l turn out to be more appropriate to the low-
lying monopole states. Since the two systems
are qualitatively different, the nature of the cor-
responding quantum states will be different; in
particular the el.ectric charge and color hyper-
charge of the grand unified monopoles will be
unquantized.

Canonically quantizing example one yields a
Hilbert space of states spanned by the position
eigenstates Ix). If we denote by C, the "semi-
classical configuration space, " the set of all
minima of V, then C =(x,) is in 1-to-1 corre-
spondence with Z, the set of integers. The semi-
cl.assical method now tells us that the low-lying
energy eigenstates are well. approximated as
e —0 by linear combinations of the ix, ), x, ~ C,
and that furthermore the best choices of these
combinations are those that diagonalize any exact
symmetries of the Hamiltonian.

We have characterized C as a set of points, but
what is its topology'? Which of its points should
be regarded as "very close" to one another? The
answer is that none of the points are cl.ose; i.e. ,
the discrete topology is appropriate for C. This
is because for fixed 8 and T, (x, ie "~lx, ) does
not approach 1 as x,. ranges through C —(x,):
Between any two points there is a finite Euclidean
action barrier. Furthermore, since the symme-
try group of H is also Z acting by discrete trans-
lations, the low-lying energy states are the Bloch
waves, representations of Z l.abel. ed by an angu-
lar "crystal momentum": IH) =Q.,

e'"e
l x„).

Now consider Fig. 1(b). This example differs
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FIG. 1. Potentials for two classical systems.

from the first in that (a) one direction in the po-
tential is flat, and (b) some absolute minima of
V are separated from others by barriers requir-
ing infinite action to traverse. While C thus con-
sists of the points on the two troughs of V, it is
consistent to restrict to just one when finding the
stationary states of the full. quantum theory.
Cal. l C' the points al.ong one trough and IC, those
along the other. These are related by the inver-
sion operator I along the x axis.

Since distinct points of C' can now be close in
the sense described above, the topol. ogy of C' is
not discrete. Again not surprisingly we find that
C' is homeomorphic to R, the real. numbers.
Since the symmetry group of transl. ations of C'

is al.so R, the low-energy eigenstates are char-
acterized by an arbitrary real number p: ip)
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= fdx e'~"
l x), x R C'. The spl. ittings between the

states are proportional to the eigenvalues of the
Laplacian on R: E~P'. The eigenvalue P is not
quantized, because of the noncompactness of the
associated symmetry group.

We have now found two sets of approximate en-
ergy eigenstates of the complete system, namely
IP) and Ilp). While we are not compelled to as-
semble these into parity eigenstates —,'(1+I ) I P),
neither is this forbidden; the infiniteness of the
barrier between the troughs will then be ref 1.ected
by the lack of any splitting in the energies of the
resulting states IP, +).

The transcription of these considerations to
gauge field theories at weak coupling is straight-
forward. Consider for example SU(2) broken
spontaneously to U(l) by an adjoint Higgs field
y, and quantize in the temporal gauge A. p= 0. As
in the examples, the absolute minima of the
classical energy functional. are stationary. They
may all. be described as gauge transformations
of p(x) = c~„A(x)-=0 by a function g(x). Appar-
ently C = (maps: R'- SU(2)). In the temporal.
gauge, however, we must consider physical
states averaged over "little" gauge transforma-
tions' (LGT), i.e. , those of the form exp)8(x)T'],
where T' are the anti-Hermitian generators and
X'(x)-0 as lxl-~. This means tha, t C shoul. d

actually be taken as a quotient space under equiva-
lence up to LGT. In addition' we can reduce C
to C' consisting only of those classes of g mhich
canbe reached from g-=1 by a path of finite ac-
tion. Such g must at spatial infinity lie in the
stabilizing group stab@ of the Higgs field, since
otherwise any interpolating history betmeen g =— 1
and g(x) would have P c 0 throughout infinite vol. -
ume and so would have infinite action. Thus we
must have g(x) —exp[ —i~,X(x)] as lxI-~.

Simple power counting now shows that X (x)
must at infinity approach a constant independent
of angles. ' The value of this constant is in fact
irrelevant, as both g(x) and g,g(x) describe the
same vacuum configuration, where pp is a coll-
stant group element. That is, part of the ful. l.

symmetry group acts trivially on the vacuum,
so that C is finally the maps into SU(2) which
approach 1 at infinity modulo LOT. These maps
form the group m, [SU(2)] —= Z. The Belavin-Polya-
kov-Schwartz- Tyupkin inequality' now says that
the discrete topology for C is appropriate, so
that this is example one and the vacuum states
are labeled by an angular parameter 0.

The analysis proceeds similarly when we in-
stead minimize F. subject to the constraint that a

monopole be present. Thanks to the monopole's
topological stability, the resulting quantum the-
ory is still. consistent. We replace the energy by
the "excess energy, " the amount by which it ex-
ceeds the absolute minimum in this sector, and
similarly the action. Let IM) be the eigenstate
of the field operators with eigenvalues the ra-
dial. -gauge 't Hoof t-Pol.yakov monopole, aver-
aged over all. LGT. The configurations of mini-
mum energy are again labeled by functions g:A'
—SU(2).

We can again reduce C to C', in which g - exp(- i
x T 'rvv), U MR. (If the unbroken group were non-
Abelian we would also have to demand g-stab@
Astable, where Q is the generator of the long-
range gauge field, to avert a linear divergence in
excess action. ) Now, however, we cannot set the
constant v equal to 0, since the monopole is not
invariant to global charge rotations. g is thus
partly specified by its asymptotic value e'", and
since any g„g, with the same e"" differ by g,g, '
-1, a single integer completes the description of
g up to LGT. Thus C' corresponds to Z&[0, 2m).

To find the topology of C', choose a representa-
tive of each of its classes, say g'"' = exp[-i 7'

~ r X (r) ], where X (0) = 0 and A. (~) = mv. It is easy
to find an interpolating field path from g" at
time zero to g'""' at fixed time 7 with Euclide-
an action of order &. This means that C' is hom-
eomorphic to R and this is example two. The
low-lying monopole excitations are character-
ized by a real. number P, which is not periodic.
In particular, the energy E ccp'.

To see what is going on, note' that the unitary
operator U(v) impl. ementing g'"' equal. s exp(2~iaQ/
e) when acting on physical. states, where Q is the
electric charge operator. Since g"' has winding
number' equal to 1, we have that 8 = p mod2m,
and the electric charge q = eP/2m= e(n+&/2m),
where n is an integer. This is Witten's result.
Since (n, 9+2m) and (n+1, 0) describe the same
p, it is no surprise that the respective energies
are equal, nor that they are proportional to the
square of p, the charge. Nowhere has it been
necessary to consider the internal structure of
the monopole.

The generalization to SU(5) is immediate. Start-
ing with the fundamental monopole, the minima of
E are specified by g(x) such that there exists

g(x) = l.im g(x)

& stab p R stab@ & G = SU(3) I3I U(1)E M.

940



VOLUME 50, NUMBER 13 PHYSICAL REVIEW LETTERS 28 MARcH 1983

The subgroup of G is SU(2)I3 U(1)r U(1)EM, but
the SU(2) acts trivially on I M) much as in the
vacuum sector. Since the remaining group is
Abelian we again have gg) independent of angles.
Furthermore, one l.inear combination of the gen-
erators T„=—2iX, and TEM acts trivially on I M)
as well, so that finally we have C =R just as be-
fore. The states lp) have electric charge q =ep/
2m, color hypercharge y =-qWS/4e, and B —I.
=q/2e, just as the classical Dokos- Tomaras
dyons.

In the quantum theory, however, q is arbitrary.
At first this seems to be no problem, since when
we reduced C to C' we obtained an Abelian sym-
metry group whose covering group is noncompact.
However, the remaining color symmetry gener-
ators are analogous to the inversion I of example
two, and so we should be able, as stated by Dokos
and Tomaras, ' to form dyons in various SU(3)
multiplets. (The I-type rotations should, how-

ever, remain in stab@, since otherwise the I
eigenstates would violate cluster decomposition. )
In particular, since Ip) has definite isospin and

hypercharge, the fact that the latter is arbitrary
is somewhat nettlesome.

We must conclude that either (a) & is required
to be zero, or else (b) the existing generators
of global SU(2) S U(1) S U(1) gauge transforma, —

tions cannot be extended to a set for the full un-
broken SU(3) U(1). Since such an extension al-
ways exists in the absence of a monopol. e, both
options have the unattractive feature that the
monopol. e, a local. ized object, affects the global
nature of the vacuum. Defining the generators
as in Ref. 8, I have shown that in fact option (b)
is correct, that in the presence of a monopole a
homotopy obstruction renders the extension im-
possible. I wil. l not give the proof here, since
subsequentl, y Manchar and I' have arrived at a
more general resul. t.'

Thus there exists a wide variety of dyon states
with ordinary charge, color hypercharge, and
B - I- all proportional to an arbitrary real num-
ber p. All. are obtained from our Ip) states by
large gauge transformations. These dyons have
no particular color, and hence no Clebsch-Gor-
dan decompositions for the scattering ampl. itudes
of colored particles, even when 6 =0.

In an attempt to understand the physical. impli-
cations of these results, one might argue that
for any 0o 0 our monopoles, being color charged,
wil. l necessarily be confined. If there are no
massless quarks this would seem to require that
fundamental. monopoles be bound to antimono-

poles; the subsequent annihil. ation could account
for their observed paucity today. This scenario
is probably not correct. According to 't Hooft's
conjectured confinement mechanism, "in pure
QCD the ground state is well described by a set
of "transient" dynamical variables: one U(l)
gauge field for each of the Cartan generators of
SU(3), electricall. y charged quarks and gluons,
and excitations which are magnetic monopoles
with respect to the Maxwell fields. This picture
should remain valid in the low-energy reduction
of a grand unified theory. Even if a genuine SU(5)
monopole is introduced we expect no interference
with confinement, a local. phenomenon. Choosing
the Cartan generators to include the monopo1. e's
Q, it then has Abelian quantum numbers propor-
tional to those of transient excitations, regard-
less of 0. The latter condense in the confining
phase, and so the SU(5) monopole should be un-
confined for smal. l. but nonzero ~, unlike quarks
and other states with only el.ectric charges. Its
color wil. l be screened at the confinement seal. e
by the plasma of transient excitations.

We can repeat the discussion near each of sev-
eral. widely separated monopoles even if their Q
do not match. If this argument is valid, then for
small L9 & 0 grand unified monopol. es should indeed
be unconfined hadron-like particles, just as in
the 8 = 0 case. For finite ~ there can be phase
transitions in the theory. The continuity prior
to these, however, means that the discovery of
monopoles could not be used to determine that ~

is precisely zero.
Prior to this work Abouel. saood arrived at a

conclusion slightly different from mine, that
some chromodyon excitations do not exist be-
cause of their vanishing moments of inertia. " I
thank him for showing me his work. I also thank
S. Coleman, H. Georgi, A. Manohar, and E. Mit-
ten for valuabl. e discussions. This work was sup-
ported in part by the National Science Foundation
under Grants No. PHY77-22864 and No. PHY82-
1524S, and by a National. Science Foundation
graduate fel.l.owship.
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