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A new type of bifurcation to chaos is pointed out and discussed. In this bifurcation two
unstable fixed points or periodic orbits are created simultaneously with a strange attractor
which has a fractal basin boundary. Chaotic transients associated with the coalescence of
the unstable-unstable pair are shown to be extraordinarily long-lived.
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In this paper we consider a new type of bifurca-
tion to chaotic motion. This bifurcation is char-
acterized by the simultaneous appearance of a
pair of unstable fixed points or periodic orbits,
a, fractal (i.e., nondifferentiable) basin boundary,
and a chaotic attractor (also commonly called a
strange attractor). Just prior to this type of bi-
furcation, transient behavior with a chaotic char-
acter can take place, and these chaotic transients
can be extremely long. The existence of such re-
markably long-lived chaotic transients may have
important implications for experiments on cha-
otic systems.

To motivate our considerations, we note that the
general question of how chaotic attractors arise
as a system parameter is varied is of great funda-
mental interest. According to conventional wis-
dom, only a small number of distinct types of
chaotic attractor onsets are generally seen.
Among these are period doubling, ' intermittency, '
and crises. ' In the first two a nonchaotic attract-
ing orbit evolves into a chaotic one. On the other

hand, in a crisis a chaotic transient converts into
a chaotic attractor. As a concrete example of the
latter, say that when p, a parameter of the sys-
tem, is in the range p & p, a nonchaotic attractor
exists. In addition, for p & p, chaotic transients
are also observed to occur before orbits settle
into the nonchaotic attractor. As p approaches
p from above the average duration of a chaotic
transient approaches infinity, and past p a cha-
otic attractor appears by conversion of the chaotic
transient. For p &p the chaotic and nonchaotic
attractors coexist, each with its own separate
basin of attraction. (The basin of attraction of
an attractor is the set of initial conditions whose
trajectories asymptotically approach that attrac-
tor as time increases. ) In general there will be
some boundary separating these two basins. The
question of how the chaotic attractor is created
(as p decreases through p }, or, inversely, de-
stroyed (as p increases through p } has only re-
cently been addressed. ' Generally, the disap-
pearance of the chaotic attractor occurs via a
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8„,= 28„mod2m,

z„+~ = Az„+ cos 8„,

(la)

(1b)

where we take 2 & A. & 1, and the range of 8 is
taken to be 0 + 8c 2m. This map has been pre-
viously studied by Kaplan and Yorke' for ~A.

~
& 1,

in which case it has a chaotic attractor but no
fractal basin boundary. Given 8„„, it is not pos-
sible to find &„uniquely since there are duo pos-
sible solutions of (la}, 8„=8„„/2 a.nd &„=n

+ 8„„/2. Thus the map (1) is noninvertible. The
Jacobian matrix of the map, Eqs. (1), has eigen-
values 2 and A. Since both exceed 1 there can be
no attractors with finite z. In fact, almost all

motion of the attractor and its basin boundary
toward each other, with the critical state (p =P )
occurring when the two touch. In previous works
this has been studied for the case in which the
basin boundary is smooth (cf. Ref. '3 and refer-
ences therein).

In this paper we demonstrate a new type of bi-
furcation which causes the birth or death of a
chaotic attractor (as at p =p in the previous dis-
cussion). For the phenomenon in question, the
basin boundary is a fractal (nondifferentiable)
curve. We find that f ractal basin boundaries and
our new type of bifurcation to chaos can occur in
systems of at least four (autonomous) differential
equations, invertible maps of at least three di-
mensions, or noninvertible maps of at least two
dimensions. (An analogous situation holds for
chaotic attractors which occur in noninvertible
one-dimensional maps but require two dimensions
for the invertible case. ') To illustrate the phe-
nomena in the simplest context, we shall restrict
the present treatment to the two-dimensional non-
invertible case. ' Our work on the three-dimen-
sional invertible case will be reported elsewhere. '
We believe that, as a general rule, noninvertible
rn-dimensional maps can be used to model phe-
nomena which can only occur in invertible maps
of dimension greater than rn.

To begin we wish to consider the occurrence of
fractal basin boundaries. To our knowledge, ex-
plicit discussion of fractal basin boundaries has
been restricted to the study of analytic maps of a
single complex variable. While of basic interest,
such maps are not typical models of dynamical
systems. In particular, by virtue of the Cauchy-
Riemann relations, chaotic attractors cannot oc-
cur in such maps. To demonstrate a fractal basin
boundary in the simplest possible context, consid-
er the following two-dimensional map,

z=f(8)= —g A, ""'cos(2' 6)
l=a

(2)

Since A. & 1, the sum in (2) converges absolutely
and uniformly. Now consider df /d 8. From (2)
df/d 6= z Q(2/A) ""~sin(2'8). Since A & 2, this
sum diverges, and thus f(8) is nondifferentiabie.
In fact, the curve (2) has an infinite length and a
fractal dimension d which is between 1 and 2 [it
can be shown' that d=2-(ink)(ln2) '].

To illustrate our new type of bifurcation to
chaos, we consider a modification of Eqs. (1),

b„„=2 b„mod2m,

z„+i = nz„+z„+p cos 8„.

(3a)

(3b)

Figure 1 shows results of iterating Eqs. (3}, for
a particular set of parameters (a =0.5, P = 0.04).
For these parameter values there are apparently
two attractors, z =+ ~ and a chaotic attractor lo-
cated in the region, —0.1 a z ~ 0.1. The solid
black region in Fig. 1 is the basin of attraction
for the attractor z=+ ~. The blank region in Fig.
1 is the basin of attraction for the strange attrac-
tor. Also shown in Fig. 1 are a large number of
iterates of the map generated by a single initial
condition in the blank region. This may be re-
garded essentially as a picture of the chaotic at-
tractor. (For our purposes, it is useful to re-
gard z=+ ~ as representing a general nonchaotic
attractor. )

To see why a fractal basin boundary is expected,

initial conditions will generate orbits that are
asymptotic to either z=+ ~ or z= —~ as n-+ ~.
We consider z =+ ~ and z = —~ (with 0 & 8 &2p)
as two attractors and ask what is their basin
boundary. That is, what is f (6) such that initial
conditions in z &f (8) lead to orbits which are
asymptotic to z =+ ~, while those in z &f (8) yield
z —-~. The calculation of f(8) is facilitated by
two observations: (i) the dynamics of the 6 varia-
ble is independent of z [cf. Eq. (1a) ], and (ii)
since forward iterates of an initial point are re-
pelled by the boundary, backward iterates ap-
proach it. Say we pick a value 9 and wish to find
the corresponding z =f(8). We take 8= 6, in Eq.
(1a) and iterate 8, forward, 8„=2"8, mod2z. Im-
agine that we iterate forward up to n =N. Now

choose some value z' =z~ and iterate z backward
along the 8 orbit orginally generated f rom 8,.
Use of 6„=2"8, mod2~ together with Eq. (1b) yields
an expression for z,. Letting N — in this ex-
pression, z, approaches the basin boundary, and

we obtain an equation for the basin boundary,
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FIG. 1. The attractor and its basin for a = 0.5 and

P = 0.04. Points initialized in the dark region lead to
orbits which are asymptotic to z = + ~, while points
outside the dark region yield orbits asymptotic to the
strange attractor. In order to display more clearly
the collision of the chaotic attractor and its basin
boundary (which occurs at 8 = 0), we have plotted the
horizontal axis on (-x, 7t.) rather than (0, 2x). In effect
we are identifying 8 and 8 —2w for v&8&2m. Thus 8=0
is at the center of the figure.

consider Fig. 1. We note that the upper basin
boundary is located in the region 0.55 ~z ~0.45.
As a crude approximation to the dynamics in this
region we set z = P6+ 0.50, and linearized (3b)
about z=0.5 to obtain 5„,y 1 55„+cosh„, which
is the same as Eq. (1b) with A=1.5. The same
crude argument can be used to make plausible
the presence of a chaotic attractor. Namely,
linearization of ('Sb) about z = 0 again yields Eq.
(1b) but with A. = 0.5. Kaplan and Yorke' have
shown that Eqs. (1) with (A~ & 1 have a chaotic at-
tractor.

Magnification of a small portion of the basin
boundary clearly reveals its fractal structure. '
The lower basin boundary in the vicinity of z
= —1.0 is essentially a preimage of the upper bas-
in boundary. Every point in the black region in
z & 0 (i.e., below the lower basin boundary) maps
on one iterate to a point above the upper basin
boundary, after which z remains positive and ac-
celerates to z =+ ~ [e.g. , this can be readily seen
to be the case for large negative z, since in this
case Eq. (Sb) yields z„„=z„'].

Now consider what happens as n is increased
from o =0.5 (the value corresponding to Fig. 1).
Observe that the smallest z value on the upper
basin boundary (denoted z~) occurs at b=0, and
that the largest z value on the chaotic attractor

(denoted z, ) also occurs at 8=0. As n increases,
these two points mover closer together, until, at
some critical value a = n, they first touch. We
find numerically that a =-0.6. Further, one can
show that ( &, z) = (0, z, ) and (0, z~) are fixed points
of the map. Thus we predict e by looking at the
fixed points of Eqs. (3}. The value 8=0 automat-
ically satisfies Eq. (Sa) for all n. Putting 8=0 in

(Sb) and assuming that z„ is independent of n

(i.e., a fixed point) yield z = nz+ z'+ P, or z,
=((1 —o) +[(1—a)' —4P]'~')/2, and z, =z, and z,
=z . Linearization of the map (3) about these
two fixed points shows that they are both unstable
with z strictly repelling and z repelling in one
direction and attracting in the other (a saddle).
As n is increased from u & 1 - 2P'~', the two
points move toward each and coalesce at n =1
—2P' ' (cf. equation for z, ). Past n =1 —2p'~' the
fixed points annihilate and no longer exist. Thus
we predict a =1 —2P't', or n„=0.6 for P=0.04.
For e & e the chaotic attractor no longer exists
and almost all initial conditions are eventually
attracted to z=+ ~. Thus as n is increased
through o. = a the unstable fixed-point pair an-
nihilates and the chaotic attractor along with its
basin dies. Conversely, as e decreases through
e =e, the unstable fixed-point pair and the cha-
otic attractor and its basin are born. ' [Thus when
the attractor dies (or is born) it does so by col-
liding with an unstable fixed point on the basin
boundary. In the terminology of Ref. 3 such an
event is called a exists ]Alth. ough our example,
Eqs. (3), exhibits the phenomenon of unstable-
unstable pair bifurcation to chaos for the case in
which the pair is a pair of fixed points, we em-
phasize that the same considerations apply when
the pair is a pair of periodic orbits. We have
verified this numerically by examination of other
maps [e.g. , add a constant phase shift into the
cosine term in (3b}).

Now consider what happens when a just exceeds
It is observed that orbits initialized in the

region which was formally the basin of attraction
for the chaotic attractor are initially drawn to
what looks like the old chaotic attractor. The
orbit then bounces around on this chaotic attract-
or remnant in a chaotic fashion, as for e & a .
After some time, however, the orbit lands suf-
ficiently near the region of coalescence of z, and
z and then rapidly leaves the chaotic attractor
remnant, accelerating to large positive z values.
Thus the chaotic attractor (o & n ) is replaced by
a chaotic transient (n & n ). Figure 2 shows a
chaotic transient for P = 0.04 and u = 0.65 & a
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FIG. 2. Picture of a chaotic transient for P = 0.04
and n = 0.65 & n. = 0.06. See caption to Fig. 1 for the
definition of 8.

= 0.60. The black region represents initial points
which rapidly acquire large z values. This re-
gion is fairly well defined because the average
length of a chaotic transient is very long (-2
X10') for these parameters. Also shown in Fig.
2 are the first 10' iterates of a chaotic transient
generated from a single initial condition in the
blank region. Note the apparent penetration of the
black region into the region of the attractor rem-
nant at 6=0.

We have obtained numerical results for the av-
erage lifetime of a chaotic transient (denoted (~))
by averaging over many different randomly chos-
en initial conditions in the basin of attraction.
These results are found to agree well with our
theoretical prediction (cf. Ref. 6), ln(7) -[(g/
P'~')in2](a -n ) '~', derived for n —n «n, . In

particular, we have numerically examined the
case P =0.04 for n —a in the range 0.07 to 0.15
and find very good agreement with ln(r) = 4.87(u
—a ) '~' —4.53, where the constant term is a fit-
ting parameter. The remarkable aspect of this
result for (r) is that these chaotic transients can
be very long-lived. For example, even at a val-
ue of e -20~/p above e the transient is of the
order of 10' iterates, while for (a —o.„)/u„-0.1

we have (T) & 10'. The reason for this observed
persistence of long chaotic transients for relative-
ly large values of (o. —n )/n can be found in the
theoretical prediction for (~). According to the

theoretical prediction (~) is zero at n (as it
must be), and all its derivatives, d" (w) '/d"o,
are also zero at u =o. . Thus (~) ' increases
tery slowly from zero as (u -a„)/u increases.
These results contrast with other types of chaotic
transients which arise when a strange attractor
collides with a smooth (not fractal) basin bound-
ary. In these cases a typical result is (z) ' -(o.

)' ' (cf. Ref. 3), a,nd long decay times only
exist for (n —a„)/n quite small.

The phenomenology we have described here im-
plies that an experimenter may have to carry on
the experiment for a long time in order to distin-
guish a long-lived chaotic transient from a real
chaotic attractor. Qn the other hand, in experi-
ments where long transients can be seen over a
relatively large range of the parameter, unstable-
unstable pair annihilation would be a likely cause.
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