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Statics and Dynamics of a Two-Dimensional Ising Spin-Glass Model
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The temperature and field dependence of spatial correlations and relaxation times are
investigated in detail by Monte Carlo simulations for a two-dimensional Ising spin-glass
model. There is no transition, but, in zero field, barrier heights and correlation range
increase smoothly at low temperatures. This increase does not seem to be fast enough to
explain experiments. In a field, barrier heights and the correlation length tend to a finite
limit as T—0. Points in the h-T plane with constant relaxation time satisfy T( h)- T( )0~ h
at moderately low temperatures.

PACS numbers: 75.10.Hk, 05.50.+q, 64.60.Cn

There are several calculations' on spin-glass
models with short-range interactions which pre-
dict a lower critical dimension (LCD) of 4. Con-
sequently there should be no spin-glass transi-
tion in three dimensions and the infinite-range
Sherrington-Kirkpatrick' (SK) model, which does
have a transition, should be inappropriate for ex-
plaining experiments. It is therefore surprising
that the following experimental results are reason-
ably well described by the SK model: (a) There
is a dramatic increase' ' in the nonlinear suscepti-
bility, g„I, in the same region of temperature,
T, as the cusp in the linear susceptibility.
diverges in the SK model but remains finite if
there is no transition. (b) There is evidence"'
for a "transition line" in the h-T plane (h is a
uniform field), similar to the Almeida-Thouless
l.ine for the SK model. Even the power-law varia-
tion T, (h) —T, (0) o:h' ', for small h, predicted
by Almeida and Thouless, seems to be found ex-
perimentally. (c) For certain materials at least,
the temperature of the susceptibility peak varies
very little with frequency, ' as is natural in the
phase-transition hypothesis. However, a much
larger variation is predicted by the alternative

picture of "gradual freezing. '"
These results suggest that either the prediction

of an I.CD equal to 4 is wrong or correlation
lengths, and relaxation times, while not strictly
diverging, increase considerably over a narrow
temperature range as a result of cooperative ef-
fects between the spins. In order to decide which
of these two alternatives is correct one needs to
know quantitatively the range of correlations in
space and time as functions of h and T. While the
spatial extent of correlations with h = 0 has been
discussed, '" albeit on somewhat small lattices,
virtually" no precise results on relaxation times
have been given, and little is known about the ef-
fect of a magnetic field. Here I start to fill in
this important gap by reporting results of de-
tailed Monte Carlo studies of the Edwards-Ander-
son model with Ising spins on fairly large square
lattices of size N= LxL, where I =68 and 128.
The Hamiltonian is given by

where S,. =+1, i =1, . . . K, and J,, is a nearest-
neighbor interaction taking values +1 with equal
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probability. Averages over several samples
(typically 20-60) were made. The calculations
were performed on the distributed array proces-
sor, which can perform 4096 similar operations
in parallel. It is, to my knowledge, substantially
faster for this problem than any other multipur-
pose computer, a fliptime of 0.2 @sec/spin being
readily obtained (with h = 0). Details of the com-
putations and results in three dimensions will be
published separately. If the LCD is 4 there should
not be a qualitative difference between two and
three dimensions.

My main conclusions are the following:
(i) No transition is found in the temperature

range studied. Very low temperatures are inac-
cessible because equilibrium cannot be estab-
lished within the available computer time. Al-
though I cannot completely rule out a transition
at a low but finite temperature, this seems un-
likely, and the present results are quite con-
sistent with Morgenstern and Binder's (MB) pre-
diction that, for h=0, the spin-glass susceptibil-
ity, g, o, defined in Eq. (4) below, and the cor-
responding correlation length g, have a power-
law divergence as T-0. The present results ap-
pear to rule out Fernandez's claim of a transition
of Z'=1. For k=0, ps& ~g„& and, although the
extrapolation of the present results to low Z" gives
a large g„„ the increase does not appear to be
as rapid as that seen experimentally. '

(ii) When h= 0 g, c saturates to a. finite value as
T-O.

(iii} Results analogous to (i) and (ii) are ob-
tained also for dynamics. An "average relaxa-
tion time, "

T, and corresponding "characteristic
energy barrier" DE (= Tln7) are evaluated. For
4=0 I find b,h ~ 7' ', whereas in a field L~ sat-
urates to a finite value as T-0. The Z

' varia-
tion of AE gives a more rapid increase in relaxa-
tion time with decreasing temperature than a
simple Arrhenius law (DE =const) but does not
seem sufficiently rapid to explain the almost fre-
quency-independent freezing temperatures found
in Ref. 8. From (i)-(iii) it seems clear that the
growth in A4' at low T is associated with the in-
crease in g(and hence g, o).

(iv) Lines of constant ~ in the h- T plane are
plotted and, for the lowest temperatures studied,
do seem to vary the same way as the Al meida-
Thouless line, i.e. , Z(h) —T(0) cx- h' ', although
the exponent is not determined with great pre-
cision. These results seem quite similar to the
experiments of Bontemps, Rajchenbach, and
Orbach. '
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Next I describe quantities that are calculated.
Information on dynamics is conveniently extracted
from the usual autocorrelation function

q(t)=& 'Z (s;(f.)&;(~.+f)), (2)
i =1

where t, is the equilibration time and ( ~ )„ in-
dicates an average over samples. t, is estimated
by observing the time, i„ that q(t) takes to reach
its equilibrium value, and ensuring that t, - v~.
This sets a lower limit on the temperature range.
For t- ~, q(t) -q= ((S,. )r')~, where ( ~ ~ )r is a
statistical-mechanics average. For this model
q=0 if k=0. From q(t), we define gaby"

7 = (1 —q)
' f (q(t) - q j dt

The decay of q(t) is certainly not exponential (at
low T it is close to logarithmic) and if we repre-
sent the decay by a spectrum of relaxation times
P(T) so that

q(t) = q+ (1 —q)J P(T)exp(- t/T) d T

then v = f ™7P(w)d7is the average relaxation time.
Information on the spatial range of correlations

is obtained from

x „(t)=iv-' Q (s, (t,)s(f,}s,. (t.,+t}s,(t, +f))„.
@~i=&

which, for sufficiently long times (in practice t
& f,) becomes ps~, where

x =&' Z &(s;s,),'& -q'. (4)
i, 1=1

For 8=0, ps~ =3T'g„„ the nonlinear susceptibil-
ity. Since S,. = +1 the number of spins correlated
with a given spin, denoted by AA", is given by y«
—1 where I have chosen to subtract the i =j terms
in Eq. (4). As ysG grows so does AN and hence
so does the correlation length. For k=0 the lat-
ter has also been directly evaluated by calculating
correlations between lines of spins. Defining, in
an obvious notation,

r(n)=x ' Z Z ((s;, ; s;, ; ..),')., (5)

I always found 1(n) CC exp(- n/$) from which the
correlation length $ can be extracted.

I now present my results. Data for ps~' ' and
$ with h=0 are given in the inset to Fig. 1 down
to Z'=1.0 for 64' and 128' lattices. No dependence
on system size was found as expected because $
«L. These results rule out the transition at Z
= 1.0 proposed by Fernandez. " When ( is large
one expects that y, ~ cc j' and MB have claimed
that $ ~ T ' and g, o ~ Z' '. The present results
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FIG. 2. Plot of bE against T ' and in~ (= bE/T)
against ( y sG —1)'~ for 64' (circles) and 128 (crosses)
lattices. The lines are guides to the eye.

T

FIQ. l. Inset: gsG' ' and ( for h, = 0 as a function of
T ' for 64 {circles} and 128 (crosses) lattices. Data
for ( from Morgenstern and Binder are indicated by
squares. The main figure shows X sz against T for
several different values of h; again circles denote a
64 lattice and crosses a 128 lattice. The curves are
guides to the eye.

show ps''~' and $ increasing faster than T ' and
are quite consistent with MB's prediction of T '
but I cannot go to low enough T to determine the
power law accurately. Note that MB's results,
indicated by the squares, seem to underestimate

$, perhaps because of the smaller sizes used in
their calculations (up to 18'). Assuming T ~ vari-
ation for y, ~ below T=1, then at T=0.58 (the
significance of which is explained below) one has
ps~ ~300, which can be compared with the results
of Omari, Prejean, and Souletie' for 1/p CuMn
that y„~ = gsG/3T =500 at T=12.5 K and y„&
=3500 at T=11.15 K. The rate of increase ob-
served experimentally is much faster than T '
at these temperatures.

Data for ps~in a field are also given in Fig. 1
and suggest very strongly that ps~ saturates to a
finite value as T-0 when A~0.

I2

0.6 0.80.2 1.6 2.00 0.+ I.O 1.2

FIG. 3. 2 E against T for g = 0 (crosses), 0.1 (open circles), 0.25 (triangles), 0.45 (closed circles), and 0.7
{squares) for 128~ lattices. The lines are least-squares fits by the form 6 E = a + 5/(e+ T).
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FIG. 4. The points are where ln7- has a certain vaIue
for the given field and are determined from the fits of
Fig. 3. The lines are a guide to the eye and the num-
bers at the top of each line give the corresponding val-
ues of In7 ~

+ T). Apparently ~E (like It«) tends to a finite
value as Z'-0 in a field. From the least-squares
fits one can obtain the temperature where ln~ has
a prescribed value. These temperatures are plot-
ted in Fig. 4 against 8' ' for several values of 1.n&

and at lower temperatures the data are consistent
with T(h) —T(0)~ h' ' for fixed 1n~, but the expo-
nent is not aceurate1. y determined. " This is rather
similar to the results of Bontemps, Hajchenbach,
and Orbach' on Eu, ySrp 68 who find different
"transition lines" depending on meassuring time.

The computations were done on the distributed
array processor (DAP) at Queen Mary College,
Iondon, which ls supported by the Science and En-
gineering Research Counci1. of Great Britain. I
should 1.ike to thank N. Bontemps, J. Hajchenbach,
I. Mclenaghan, D. Sherrington, I. Morgenstern,
M. Hardiman, and E. P. Wohlfarth for he1.pful dis-
cussions and P. Monod for bringing Ref. 3 to my
attention. I am also grateful to K. Smith of the
DAP support unit for programming advice.

ln Fig. 2 bE (= Tin~) for & =0 has been plotted
against T and the good straight-line fit indicates
a divergence of the barrier heights as T-0. No

evidence of Vogel-Fulcher" behavior is observed.
Also given is a plot of 1n~ against r N' ', where
DA= ps~ —1 is the number of spins correlated
with a given spin. Again a good straight-line fit
is obtained. If we take literally the extrapolations
in Fig. 2 then Itsy cc(AE/T)'- T ' in precise agree-
ment with MB. Morgenstern" has argued that
aE(T) saturates to a finite value (of about 15) at
Z'= 0. This cannot be ruled out by the results of
Fig. 2.

Mulder, van Duyneveldt, and Mydosh' find that
the freezing temperature, Z'&, varies with fre-
quency v according to dlnT&/dlnv =+, for sev-
eral metallic spin-glass alloys in the range v

=1-10' Hz. If we assume a microscopic time
y~, « =10 " sec and equate (vT, «) ' with an
average dimensionless relaxation time at the
freezing temperature, then the freezing tempera-
ture for v=10 Hz, say, corresponds, in the sim-
ulation, to the temperature where ~=10". Extra-
polation of the data for ln7. using the fit in Fig. 3
gives T=0.58 at which ~dlnT/dine~ =,—'„smaller
than the Arrhenius law (LE constant), where
IdlnT/din~I =(in~) ' =2~~, but much larger than
the value of -5~p from experiment. It remains to
be seen whether a more rapid increase in inc
occurs in three-dimensional models.

Figure 3 shows DE for several fields. The lines
are least-squares fits by the form DE=a+&/(c
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Possible Direct Observation of Phasons in Potassium
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The nonlinear response expected in a potassium point-contact device has been calculated
with inclusion of the electron-phason interaction of Overhauser. With use of the theory of
Kulik et a L., to describe the point contact, a peak is found at low energy (at approximately
0.3 meV). This peak agrees mell in energy, shape, and magnitude with an unexplained peak
in the point-contact data of Jansen et a/. A rather strong temperature dependence of the
position, shape, and magnitude of this peak has also been found in the present calculations.

PACS numbers: 72.10.Di, 71.45.0m, 73.40.Cg

Recently point-contact spectroscopic results
have been reported by Jansen et al. for metallic
potassium, ' in which peaks occur in the second
derivative of voltage with respect to current at
energies (e times the voltage) corresponding to
the peaks in the phonon density of states. ' These
peaks arise in the range of 4 to 10 meV. In ad-
dition there is a small experimental peak at the
very small energy of approximately 0.3 meV.
This is at much too small an energy to be due to
phonons. Overhauser' has suggested that this
small-energy peak arises from the scattering of
the conduction electrons by phasons in the potas-
sium. 4 This is just the energy at which the peak
in the phason density of states occurs according
to the analysis of low-temperature electrical re-
sistivity by Bishop and Overhauser. '

If phasons (and the corresponding charge-den-
sity wa.ve) do exist in potassium, one of the best
ways of seeing them would be through point-con-
tact spectroscopy. The electron-phason interac-
tion leads primarily to large-angle scattering of
the electrons. The nonlinear characteristic of
the point contact is produced mainly by large-
angle scattering. Thus electron-phason scatter-
ing should be enhanced compared to say electron-
defect scattering (or other low-energy scattering
mechanisms) in point-contact spectroscopy unlike
the situation, for example, in ordinary low-tem-
perature resistivity.

We report here the results of calculations which
show that there is quantitative agreement (with
essentially no adjustable parameters) between
Overhauser's theory of phasons in potassium, "

and the experimental point-contact results, ' both
with regard to the shape of the low-energy peak
and its magnitude.

A charge-density wave (CDW) is characterized
by a modulation of the electronic charge density

p(r) = p, [l+P cos(Q r+ y)],
where p, is the electron charge density in the ab-
sence of the CDW, and p, Q, and y are the ampli-
tude, wave vector, and phase, respe tively, of
the CDW. Accompanying the CDW is a distortion
of the lattice with low-frequency collective modes
called phasons. 4 The conduction electrons in the
metal can scatter with the emission or absorp-
tion of a phason similar to the effect of the elec-
tron-phonon interaction. Thus the electron-
phason interaction should contribute to the elec-
trical resistivity of any metal in which CDW's
occur. However, because of the very low energy
of the phasons, this contribution should be ob-
servable only at very low temperatures. Bishop
and Overhauser' have analyzed low-temperature
electrical resistivity data on potassium in terms
of electron-phason scattering and have determined
the parameters of the theory from the data.

Amarasekara and Keesom' have measured the
specific heat of K at very low temperatures (down
to 0.4 K), and they found at their lowest tempera-
tures a contribution to the specific heat in addi-
tion to that expected from the electrons and pho-
nons. They further found that this additional low-
temperature specific heat can be fitted by the
phasons of Overhauser' with essentially the same
parameters as determined by Bishop and Over-
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