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With use of an unrestricted Hartree-Fock self-consistent-field cluster approach, the po-
tential experienced by a muon in diamond has been investigated. The results strongly indi-
cate that normal muonium is localized in the tetrahedral interstitial space. By using the
calculated spin density and averaging it explicitly over the vibrational motion of the muon a
quantitative explanation is obtained for the observed reduction of the hyperfine field as com-

pared to free muonium.
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PACS numbers: 71.70.Jp, 71.55.Fr, 76.90.+d, 78.50.Ec

interesting features. (a) The hyperfine fields as-
sociated with normal muonium in these systems*
are significantly reduced from the vacuum hyper-

Hyperfine data from recent experiments using
the muon-spin-rotation technique' in group-IV
semiconductors®® are found to have the following
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fine field and exhibit an irregular trend of de-
crease from diamond to silicon (Si) and increase
from Si to germanium (Ge). (b) An anomalous
muonium level with a rather weak but anisotropic
hyperfine interaction and a similar irregular
trend is observed in all three systems.*® The
exact location of the normal and anomalous muon-
ium systems has not yet been established.

The earliest theoretical investigation® on the
hyperfine interaction of normal muonium in semi-
conductors utilized a dielectric treatment and
was able to explain the observed feature®® of re-
duction of the hyperfine fields in Si and Ge as
compared to free muonium. However, when ap-
plied to diamond® it led to a hyperfine field sub-
stantially smaller than in Si, in contradiction
with experiment.** This situation, as well as
the results of an approximate molecular-orbital
calculation by the semiempirical self-consistent-
charge extended Huckel procedure on Si and Ge,’
has led to the proposition in the literature®* that
a first-principles procedure explicitly incorporat-
ing the effects of the electron distributions of
the neighboring atoms was needed to understand
the experimental results and explore the location
of the muonium,

There are two possible avenues for including
the effects of the electronic distribution of the
neighboring atoms on the muonium atom, one
being to use® the results of the electronic dis-
tribution from band calculations in the host lattice
and compute the potential around the muonium
site due to this distribution. The second way,
which is in keeping with recent emphasis® on the
use of localized approximations for studying local
properties like the hyperfine interaction, is a
self-consistent-field Hartree-Fock cluster ap-
proach. In the present work we have adopted
the latter approach using currently developed
methods for handling such calculations in a prac-
ticable manner,' studying for the first time the
electronic structures and energies associated
with (1s-like) muonium at different positions in
diamond, using an unrestricted Hartree-Fock
(UHF) molecular-orbital approach for a cluster
consisting of the muonium and 26 atoms sur-
rounding it as shown in Fig. 1.

The UHF cluster approach utilized here has
provided a first-principles determination of both
the spin density seen by the muon as a function
of its position and the potential that determines
its location and motion. The latter provides the
definitive conclusion that the muon is located in
the tetrahedral region and not the hexagonal one,
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FIG. 1. Cluster used in present work, A through J
are carbon atoms, and the rest are hydrogen atoms.
T represents the tetrahedral interstitial site.

and using the spin-density curve and vibrational
wave function for the calculated potential, we
are able to obtain a vibrationally averaged value
of the hyperfine constant for muonium in essen-
tial agreement with experiment.* The UHF pro-
cedure used here has the merit that within the
framework of the cluster model it directly in-
cludes important effects such as Pauli repulsion
between the muonium electron and other electrons
in the lattice and the spin-polarization mechan-
ism!® which has an important influence on the
spin density. Further, the results of the present
analysis allow valuable insights into the origin
of the trend in the hyperfine fields in diamond,
silicon, and germanium.

In the cluster (Fig. 1) of 27 atoms used in our
work, the neighbors of muonium were host car-
bon atoms, the dangling bonds being saturated by
hydrogen atoms., This cluster size was consid-
ered adequate, since a smaller cluster of fifteen
atoms yielded energy and spin-density curves in
the (111) direction in better than 10% agreement
with the chosen larger cluster.

The electronic energy levels and wave functions
are obtained by use of the variational UHF pro-
cedure,'® with the molecular-orbital wave func-
tions ¥, expanded as

‘I’u :Ei c]_u' Dy (1)

the atomic orbitals ¢; being constructed from
Gaussian orbital functions™ which permit analytic
evaluation of the one-electron and two-electron
integrals involved. The summation in 7 was car-
ried out over the 1s states of the muonium and
the terminal hydrogen atoms in the cluster and
the 1s, 2s, and 2p states of the carbon atoms.
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For each of these basis functions, the STO-3G
approximation! was utilized, each atomic orbital
being expressed in terms of three Gaussian func-
tions. The reliability of this choice of basis set
for the calculation of spin densities at nuclei has
been tested by comparison of results with this
choice as well as with more extensive basis sets
for a number of small molecular systems to be
discussed elsewhere.?

In Fig. 2, the calculated total energy of the
cluster with reference to that at 7, the tetra-
hedral interstitial site, has been plotted as a
function of muonium position along the (111) di-
rection, The potential curve in Fig. 2 is sym-
metrical about the hexagonal site H, and has the
following notable features. The potential closely
resembles that of a harmonic oscillator around
T and has a minimum at this point. We have ex-
amined the force on the muon at T and neighboring
points around it both on the (111) axis and in di-
rections transverse to it using Hellman-Feynman
theorem?!® and found that the force vanishes only
at T, confirming that the potential has an absolute
minimum at this point. However, as one moves
from T towards carbon atom A, a kink appears in
the potential at a distance from A close to the
C-H bond length, indicating that the muonium at-
tempts to bond covalently with A. But it is unable
to form a C-H bond of normal strength, because
of competition from other carbon atoms to which
A is bonded, as well as the influence on the mu-
onium of its other carbon neighbors.

The potential has a maximum at the hexagonal
site H, indicating that the muon would avoid this
region, Also, the ground-state energy for the
three-dimensional harmonic oscillator around
T is 0.48 eV, which is significantly below the
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FIG. 2. Variation of total energy of 27-atom cluster
and fractional spin density f at muon site with muonium
position. Zero of energy is taken at tetrahedral site T'.

maximum of the potential (0.83 eV) at H. Fur-
ther, the overlap of the ground-state harmonic
oscillator wave functions in the two equivalent
tetrahedral regions on either side of H (Fig. 2)
is found to be of the order of only 1073, too small
for any significant tunneling to occur. Addition-
ally, for classical passage over the barrier,
one requires an excitation above the potential at
H, that is 0.35 eV, substantially larger than T
at the maximum temperature of measurement*
(150 K). Thus one can safely say that the muon
will be trapped in one of the tetrahedral regions
in diamond,

The spin density p(R) at different muon posi-
tions, obtained from the UHF electronic wave
functions, was found to have contributions from
both unpaired and paired spin orbitals, the latter
making a 25% contribution, which would have
been missed in a restricted Hartree-Fock calcu-
lation. The fractional spin density f(R)=p(R)/
Pyac (Where p,,.=1/1=0.3184,"%), in Fig. 2, is
maximum at 7' and decreases in either direction,
in a more pronounced manner as one moves to-
wards A. The contrasting feature of decrease
in f and increase in energy (Fig. 2) as one moves
away from 7 is a likely consequence of the in-
creased bonding between the muon and neighbor-
ing carbon atoms which reduces f, but leads to
an increase in total energy due to the weakening
of the bonding of the carbon atoms with their
other neighbors.

To obtain the vibrationally averaged spin den-
sity p,, at the muon, one has to evaluate the
three-dimensional integral [1¥,(R)12p[®R)d°R,

v referring here to the ground vibrational state.
The evaluation of this integral can be simplified
by the following considerations. First, from vi-
brational averaging over one dimension in the
(111) direction, it was found that the major con-
tribution arose from the neighborhood of T, where
the potential had primarily a harmonic oscillator
form K X? which could be further improved by
adding a small anharmonic term aX3. Secondly,
the three-dimensional vibrational motion of the
muon is expected to be well represented by that
of a molecule with T, symmetry** with the sym-
metry axes TA, TE, TF, and TG (displacement
vectors in these directions being 7, ¥,, T;, and
T,, respectively) in Fig. 1. Of the corresponding
symmetry coordinates &, =5(F, + %, -, - T,), &,
=3(F, -F,+ ;- 1,), 8,=5(F, - F, - F,+T,), and §,
=3(¥, +F,+T,+T,), the last one is redundant and
the vibrational wave function is of the triply de-
generate F type,** ¥, (§,) ¥, (5,) ¥, (8,). Thus p,,
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can be reexpressed as
pa= S 10, )P, ) ¥, )2
X P(S15S5,53)dS,ds,ds ,. (2)

The vibrational wave functions ¥,(s;) were taken
as the ground-state wave functions in the poten-
tials V(s;)=K’s;*+a’s;®, with K’ =3K and o’ = ga,
and were obtained variationally by taking the ad-
mixture of ground- and first-excited-state har-
monic-oscillator wave functions. The spin-den-
sity function p(s,,s,,s;) was also found to be well
fitted by the expression p,+y;(8S;>+vS;%), p, re-
ferring to the spin density at 7.

Using this procedure we obtained p,, of about
0.75 of the free hydrogen-atom spin density, com-
posed of 0.90 from p, (which would be the result
if no vibrational averaging was applied), and con-
tributions from the quadratic and cubic terms in
p of —0.18 and +0.03, respectively. This result
and the fact that p,, was essentially unchanged
when the cubic term in the potential was dropped
indicates that higher-order terms in the potential
and spin density would not affect p,, significantly.
Our result for f,,=0.75 is within 10% of the exper-
imental value in diamond®* of 0.829. The small
remaining difference could perhaps be reduced
through the incorporation of correlation effects
beyond the Hartree-Fock approach which are
rather difficult to handle in an ab initio manner
in molecular cluster calculations.

The potential and spin-density curves in Fig. 2
provide a possible explanation of the observed
trend of the muon hyperfine interaction in going
from diamond to silicon to germanium. Thus,
had the kink in the potential curve close to a C-H
bond distance away from A been more pronounced
and led to a deeper minimum than at 7, the muon
would have been trapped here and experienced a
substantially smaller spin density, and a vibra-
tional frequency comparable to the single-bond
C-H frequency would have been observed for hy-
drogen in diamond. This situation is precluded
by the shallowness of the kink in Fig. 2 as com-
pared to the minimum of the 7' site, which is
probably a result of the competition between the
four carbon atoms surrounding the interstitial
region for bonding with the muonium. The avail-
ability of larger interstitial spaces in silicon and
germanium may well tip the balance in favor of
bonding to a single host atom rather than equal
bonding to four of them as occurs at the T site.

If this were to happen, one would then have ex-
planations for the smaller spin densities*?® in sil-
icon and germanium as compared to diamond,

916

the occurrence'® of an infrared frequency for hy-
drogen in silicon comparable to that for normal
Si-H bonds, and the off-center trapping of deu-
teron in silicon revealed by channeling experi-
ments.®

In summary, the present first-principles self-
consistent-field Hartree-Fock investigation has
provided both a definite conclusion regarding the
location of the muon and a satisfactory explana-
tion of the experimentally observed hyperfine con-
stant in diamond. The success of the present
work suggests that the procedure adopted here
should be appropriate for attempting to explain the
observed trends in the normal muonium hyper-
fine constants in the heavier semiconductors, Al-
so, the results of the present work indicate that
normal muonium is not localized in the hexagonal
region. However, it is possible that the observed
anomalous muonium state,* with its weak hyper-
fine interaction, could be associated with a 2p-
like state of a muonium which might be localized
in the hexagonal space.’” But since the 2p state
is expected to be more diffuse, it could produce
significant lattice relaxation involving displace-
ments of the host atoms. While the cluster ap-
proach could be applied to an investigation of this
case, it is expected to be substantially more time
consuming than the present work,
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The temperature and field dependence of spatial correlations and relaxation times are
investigated in detail by Monte Carlo simulations for a two-dimensional Ising spin-glass
model. There is no transition, but, in zero field, barrier heights and correlation range
increase smoothly at low temperatures. This increase does not seem to be fast enough to
explain experiments. In a field, barrier heights and the correlation length tend to a finite
limit as 7—0. Points in the 4-T plane with constant relaxation time satisfy 7 (4)—T(0)xcp?2/3

at moderately low temperatures.
PACS numbers: 75.10.Hk, 05.50.+q, 64.60.Cn

There are several calculations' on spin-glass
models with short-range interactions which pre-
dict a lower critical dimension (LCD) of 4. Con-
sequently there should be no spin-glass transi-
tion in three dimensions and the infinite-range
Sherrington-Kirkpatrick® (SK) model, which does
have a transition, should be inappropriate for ex-
plaining experiments. It is therefore surprising
that the following experimental results are reason-
ably well described by the SK model: (a) There
is a dramatic increase®* in the nonlinear suscepti-
bility, x., in the same region of temperature,

T, as the cusp in the linear susceptibility. y;
diverges in the SK model but remains finite if
there is no transition. (b) There is evidence® ®
for a “transition line” in the k-7 plane (k is a
uniform field), similar to the Almeida-Thouless’
line for the SK model. Even the power-law varia-
tion T, (k) - T,(0) <k*3, for small &, predicted
by Almeida and Thouless, seems to be found ex-
perimentally. (c) For certain materials at least,
the temperature of the susceptibility peak varies
very little with frequency,® as is natural in the
phase-transition hypothesis. However, a much
larger variation is predicted by the alternative
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picture of “gradual freezing.*®

These results suggest that either the prediction
of an LLCD equal to 4 is wrong or correlation
lengths, and relaxation times, while not strictly
diverging, increase considerably over a narrow
temperature range as a result of cooperative ef-
fects between the spins. In order to decide which
of these two alternatives is correct one needs to
know quantitatively the range of correlations in
space and time as functions of # and 7. While the
spatial extent of correlations with 2=0 has been
discussed,’!° albeit on somewhat small lattices,
virtually'! no precise results on relaxation times
have been given, and little is known about the ef-
fect of a magnetic field. Here I start to fill in
this important gap by reporting results of de-
tailed Monte Carlo studies of the Edwards-Ander-
son model with Ising spins on fairly large square
lattices of size N= LX L, where L=68 and 128,
The Hamiltonian is given by

H== 2,d;;S;8S;,-h2;S,, (1)
(id) i

where S; =+1, i=1,...N, and J;; is a nearest-
neighbor interaction taking values +1 with equal
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