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Permanent Confinement in Four-Dimensional Non-Abelian Lattice Gauge Theory
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(Received 9 December 1982)

It is shown that the standard SU(2) lattice gauge theory is in a confining phase for all
values of the coupling, 0&3&~, and d 4. The main idea is to show that the electric-
flux free energy is bounded by expressions resulting from approximate (Migdal-Kada-
no ff) renormalization-group transformations.

PACS numbers: 11.15.Ha, 11.10.0h

There is a substantial body of theoretical evi-
dence indicating that asymptotic freedom and con-
finement coexist in non-Abelian gauge theories.
This is equivalent to saying that the lattice theory
is in a confining phase for all values of the coup-
ling, 0 & P & ™.In this Letter I outline an argu-
ment establishing this absence of a deconfining
transition in the standard (Wilson) SU(2) lattice
gauge theory' for space-time dimensionality d
~(4

It is clear that nontrivial estimates on order
parameters must incorporate some renormaliza-
tion group (RG) transformation connecting the
short- to the large-distance regime. Although
exact RG transformations on higher-dimensional
non-Abelian theories are prohibitively difficult,
there are several approximate schemes, first
introduced by Migdal, ' which appear to reproduce
the phase diagrams of gauge theories rather suc-
cessfully. The strategy of the following proof
will be to bound an appropriate order parameter,
the electric-flux free energy, by expressions ob-
tained from such approximate RG procedures. In
particular, I will use the Migdal-Kadanoff (MK)
"potential moving" decimation scheme, ' which is
already known to produce upper bounds on parti-
tion functions. The goal, of course, will be to
bound expectations rather than partition functions,
a generally considerably harder task. An incom-
plete, preliminary version of such an argument
appeared in an earlier paper. ' A detailed treat-
ment will be given later. '

I consider the standard' SU(2) lattice gauge

theory defined in terms of bond variables U[b]
I= SU(2) on a finite hypercubic lattice AC Z',
with periodic boundary conditions in all direc-
tions. The partition function is'

ZA = f II dU[&]expA~,
y&A

A, =PtrU„U, = g U[y]. (2)
pcA QEOp

Let ( ~ ~ ~ )„(~ ~ ~ ) denote the expectations with
measure P,~zd U[b], and the full measure (1),
respectively. The total length of A in direction
p, will be denoted by A. „, p =1, . . . , d. I typically
consider A whose "width" A=A, A, in the "trans-
verse" directions [12] is less than their "length"
1.=- g& „,,A „ in the "longitudinal" directions
(3, . . . , d). Consider a set of plaquettes S which
winds once through every [12]plane in A, and
forms a closed set on the dual lattice. The elec-
tric-flux free energy is defined by'

exp(-E") = (-,' [ 1 —g exp(-2A~) ] )

(3)

The action in Z& is A& =A&ys -As. Equation
(3) describes the introduction of color electric
flux in the [ 12] directions in A. It is the Z, -
Fourier transform of ZA /Z~, the magnetic-flux
free energy, which introduces Z, -magnetic flux
on S. It is important to note that (3) is transla-
tionally invariant since it does not depend on the
choice of S which can be moved around by a
change of variables. A consequence of this is an
alternative expression for (3):

exp(-&") =-,'(-'[I —g exp(-2A )]I 1 —g exp(-2A )]) .
pcs pg S'

(4)

The possible phases of the theory can be completely characterized' by (3).
We will be interested in "real-space" RG transformations that relate the theory defined on lattice A,

with spacing a, and variables U, to the effective theory obtained on lattice An, spacing A. a (integer A.

~ 2, integer n ~1), and variables U'. I will take the U' to be simply the old U's along the edges of
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hypercubes of side length A."a, i.e., the bonds of An. I write

ZA =exp[E~(A.")]J g dU'[b] exp[ Qq„(U')] =- exp[E&(A.")]Z~. (5)

By gauge invariance Q~(U ) can only depend on traces of (arbitrarily complicated) loops formed out of
the U s. In (5) I explicitly separate the constant piece of the effective action which is common to Z~
and Z~ . At this point we note an important special feature of (3). The flux on S affects only nontrivial
representations under the center of the group. This implies that the common constant contribution
EA(A, P) contains all constants proportional to I AI. Possible differing contributions can come only
from integration over closed «d topologically nontrivial regions winding around the lattice, and will
be included in Q~(U'). I write Qq„(U') = Q, +8~(U'), with

Q, oo, j g dU [b]Q „(U')=0. (8)

Hence from (3) and (5)

exp(-E") =ZA 'exp[EA(Z", p)]-,'{f Q dU'[b]exp[Q~(U')] —f g dU'[b]exp[Q~ (U')]]
bC&n

=z~ '-,'(z~-z~ ).
Consider a decimation from A to lattice Aq of

spacing A.a. An approximate RG transformation
can be formulated by adding to the action Aq a
"decimation operator" 4~:

&A= Z &a~ &a= Z ap&p~
oE A pro

(8)

ap —0,
p+0

(9)

and are chosen so that they effectively remove
some plaquette interactions while increasing the
strength of others at different locations in every
0. Def ining

Z, [(]=J II dU(b]exp(&~[&]), (10)

AA(hl=&~+&~A= + t'~(&) trU~
pgA

P (() =P(1+] ) =0 (12)

we can extrapolate between the exact theory ($
=0), and one application ($ =1) of a MK decima-
tion a-Aa. Zz[$] is an inc~easing function of $.'
Similarly, we define Z& [$], with

& ~ ((1=&~ + (&A,

P (-1)'&a,Ap,
o~h pea

where S~=—1 if p a S, 0 otherwise. Z~ [&J is also
an increasing function of (.

I now show that

d(z.[&]-z. (&])/« -0. (14)

This vanishes at $ =0, since, by translational in-

where 0 denotes cells of side length A.a. The con-
stants ap satisfy'

!variance and (9), the two terms on the left-hand
side vanish separately. Therefore, we have to
show that

d'(Z [&J Z[k-])id&'
= (a 'exp(A [&])-[a J'exp(A [(]),-0. (15)

The proof makes repeated use of reflection posi-
tivity (RP).' (1) satisfies the fundamental prop-
erty of RP both about (d-1)-dimensional planes
containing sites and about planes without sites. '
It is important to realize that the electric-flux
free energy (3) also possesses RP properties.
Introducing the factor 1 -g~e~ exp(-2A~) in (1),
as is done in (3), results in a measure which,
though not positive, is still reflection positive
about planes without sites bisecting S. Further-
more, using (4), it is easy to show that we also
have RP about planes containing sites. To sketch
the main idea behind the proof of (15), let us con-
centrate on decimations along the "longitudinal"
directions. Pick a plane & without sites which
divides A into two halves A„A and also bisects,
S, and write a~=a, , +A~ +a„s, =a~ +a,

Substituting in (15), we get a cross term
which is positive by RP. The cross

terms A~~~„A~az can be decomposed into
sums of terms. All of these, using our freedom
to move the position of S in Az [)J by a change of
variables, can then be shown to be positive by
BP either about planes without sites, or, using
(4), about planes with sites. The terms coming
from 6&,', A~ ' are both of the same form as
(15) itself but with the operator b. ~~ restricted to
"half" the lattice. By a change of variables one
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may now move 8 to the center of this "half"—re-
call that our periodic lattice is a circle in every
direction —,choose a plane bisecting the new

position of S, and repeat the process till the
whole lattice is exhausted. One is left with one
term A~' from each step of this iteration. These
terms can also be shown to be positive. ' Alterna-
tively, it suffices to observe here that for each
such term, A, xA, others mere shown to be posi-
tive. Hence, in the physically interesting limit of
large A, they can be ignored. Decimations along
the "transverse" directions, i.e„perpendicular
to S, can be treated in a similar fashion.

We now note that the proof of (15) can be formu-
lated without any explicit reference to AJ,. To do
this, e.g. , in the case of decimations in the longi-
tudinal directions, write a A

=Q,e~ ~~, , where
&&,. is the sum of &, 's in a column" &;, one lat-
tice spacing wide in the transverse directions.
Introduce different parameters (, for each R&. We
have Z = (Z Q ( &,

. ] J ) &

d d—„Z,l(]= Z d (Z, [{(,. ]])q „etc.
;&~ d4

All splittings that occur in the proof of (15) can
now be expressed as splittings in the sum of de-
rivatives (g,~ d/d$, ), and HP of individual
terms is restored when at the end we set (,. = $.
We also note that, since exp(FA[A. " ])&0, it is
clear that Z~ and Z&„—Zz„also define RP
measures. These observations enable one to
apply, with some slight modifications, ' the argu-
ment given for (15), to show that

(.. . (Z (m) Z -(m)
A

(18) and (7) now give the bound

( ~el) ~ 1 Zhn Zhn ZAn

Ag

(16)

m =n. (19)

From (6), and Jensen's inequality, we immediate-
ly obtain

(2o)

All the remaining factors in (19) involve effective
actions that evolved after m successive MK deci-
mations. The results of such a transformationare
well known. "' Starting with the bare plaquette
functions at large P, there is, for d ~ 4, a, con-
tinuous evolution from typical weak-coupling be-
havior, consistent with asymptotic freedom, to
the strong-coupling regime. We will take m =n
sufficiently large, so that the strong-coupling
regime is reached for arbitrary initial large P.
Rigorous estimates can be given' on the asymp-
totic form of the plaquette functions in the large
n limit. Using these, and known results, "' one
finds

Z~„(") ~exp/(const)exp[-K(p, A)X'"]
l Anl), (21)

maintained. Therefore, we may apply the preced-
ing development to Z A [ 1]-=Z ~ ', Z A [ 1]—= Z A

('),
i.e. , consider Z~(')[$], extract Z~(') [ $], etc.
Iterating m times, we obtain

Z -Z -=Z, () Z-

d'(z ~ [~]—z ~ -[(1)/d (' o- o. (16)
(„~)

= (, ,)„exp[-Z(p, ) ))(.'"], (22)
Since the first derivatives of Z~ [)]= Z~ [(P~($)]~]
and Z~ [$]=Z~ [(P~($))z] again vanish at (=0,
we obtain

where, for d = 4 and small bare coupling g02 = 2/p,

K(p, z) = k(p) exp[- b, 'g, ' ] (23)
d(Z [5]-Z „[5])/dh -0. (17)

with k(P) &cP', for some constants c, a, and
We recall that Z~[1], Z~ [1] denote the quanti-
ties obtained by one complete MK decimation ($
=1) a-)(a, and subsequent exact integration Aa

-A."a. It is a well-known feature of the MK trans-
formation that the single plaquette interaction
form is maintained, albeit no longer restricted
to the fundamental representation. RP is also

(24)b,(x) = 2~4 (A.
' —1)/X'ink. , integer A.

~ 2.
The transverse size A of A must be la.rge enough
to allow the necessary n steps to be performed.
We may, of course, take n, the number of deci-
mations performed, to actually exhaust the trans-
verse size of A; i.e., we set" ()(.")'=A. Then

exp(-E' ) ~ exp((const) (g 2) /2 exp[-K(p)A] j «, ) &2 L exp(-K(p)A).el L
(25)

(25) shows that exp(-F' )-0 exponentially in the transverse size&, as l Al is allowed to grow, with

L»A, in any power-law fashion. As has been discussed extensively in the literature, this is the sig-
nal of the confinement phase. Note that, with (24), the string tension (23) is indeed a lower bound on



VOLUME $0, +UMBER 12 PHYSICAL REVIEW LETTERS 21 MARcH 1983

the exact asymptotic freedom result. " In fact,
the bound (25) may be verified "experimentally"
for all P by numerical comparison of the MK
string tension for + ~ 2 with the corresponding
Monte Carlo data. ' At d =5, the argument fails
to produce (25), since successive MK transforma-
tions hit a fixed point, and the exponential falloff
of the strong-coupling regime is never reached,
no matter how large we take ng).

The upper bound (25), though sufficient for
establishing permanent confinement in the lattice
theory, does not allow direct passage to the con-
tinuum limit. To demonstrate nonvanishing string
tension in the continuum, a sharper estimate,
one which converges to the exact value of the b,
coefficient of the weak-coupling P function, is
presumably needed.

The same development could be applied to the
two-dimensional chiral SU(2) S SU(2) spin models.
Analogous considerations, although with attend-
ing technical complications, should extend to gen-
eral SU(N).
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Light shifts of a Rb Rydberg level, induced by an intense nonresonant electromagnetic
field, have been measured for the first time. Agreement between experimental results
and theory is satisfactory.

PACS numbers: 32.80.-t, 31.30.Jv

Light shifts in atomic spectra have been exten-
sively studied. Many experiments have been
performed for the case in which the frequency of
the light is close to the frequency of an atomic
resonance. A few calcul. ations have been made
to evat. uate the influence of the blackbody radia-
tion on the position of Hydberg energy l.evels. "'
This type of calcul. ation generally takes into ac-
count the influence of all atomic energy levels
including the continuum. Consequently, it re-
quires knowledge of all of the oscill. ator strengths
involved, which can be a serious difficulty. Sim-
ilar difficulties appear in cal.culating the effect

of an intense resonant electromagnetic (em)
field, of strengthF and frequency tu/2n, on the
position of a well. -defined atomic energy level
R,. The corresponding shift AF., is given by the
general formula

E, —E&«ken, (2)

However, for the case where the frequency satis-
fies
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