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Both bound and scattering states of the Poschl-Teller potential are shown to be connected
with unitary representations of certain groups. A family of periodic potentials, and their
associated transfer matrices and band structure, can also be obtained from group theory
and reduce to the above potential when the real period approaches infinity. These results
suggest that the algebraic approach used for treating bound-state problems can be extended
to scattering and band-structure problems.
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Group theory has wide applications in physics.
While symmetry groups can account for degener-
acies of levels and selection rules, dynamical
groups are useful in generating the spectra and
reducing the calculation of certain transition ma-
trix elements to algebraic manipulations. In the
last few years, dynamical algebras have been
used extensively to describe the spectra of a
variety of physical systems, such as collective
states in nuclei' and rotation-vibration spectra in
molecules. ' However, these applications were
restricted to bound states. In this paper, we pro-
vide the first steps towards their extension to the
other two types of spectra observed in physical
systems, continuous and band structures (in peri-
odic potentials). The inclusion of the continuum
is important when we wish to study scattering
processes as well as dissociation.

In order to illustrate the connection between
group theory and (bound and scattering) states in
a potential, we consider the Poschl-Teller' po-
tential, —V,/cosh'p, that appears in a, variety of
physical situations. It emerges as the mean field
of a many-body system with a 5-function two-
body force, 4 as the nonrelativistic limit of the
sine-Gordon equation, and in connnection with
completely integrable many-body systems in one
dimension. ' We shall show that the bound states
of this potential, finite in number, form a basis
for a representation of SU(2). The scattering
states are obtained by an analytic continuation to

the noncompact group' SU(1, 1). The latter has
unitary representations associated with a spec-
trum that can be continuous. This appears to be
a general result: Whenever the bound states are
describable by representations of a compact
group, the scattering states are obtained by an
analytic continuation to the continuous representa-
tions of a corresponding noncompact group.

The Po'schl- Teller potential corresponds to a
dynamical symmetry of the associated algebra.
If we consider the most general algebraic Hamil-
tonian quadratic in the generators (thus relaxing
the condition of a dynamical symmetry), we ob-
tain a family of periodic potentials. These po-
tentials are of interest in solid-state physics, as
they describe models for crystals that are more
realistic than the well-known Kronig-Penney' and
Scarf' potentials. It is found that the group pro-
vides us with a band structure and with the stand-
ing Bloch solutions at the center and the edges of
the Brillouin zone. The (nonperiodic) Poschl-
Teller potential can be obtained by continuously
deforming the periodic potentials as their real
period approaches infinity. In this process, the
bandwidth shrinks to zero so as to produce sharp
bound states.

To begin with, consider the group SU(2) gen-
erated by the three operators J„,J„J„and the
Hamiltonian B= —J, . If we diagonalize iV in the
subspace of a given irreducible representation,
where the Casimir invariant C= J' is a constant,
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, — P, (~)=- 'P, (r).
d' j(j+ 1)
dp' cosh'p (2)

The strength of the potential V, is given by j(j+1).
The analytic continuation to the equation satis-

fied by the scattering states could be formally
obtained from Eq. (2), by the substitution m -iA.
However, the group wave functions will then have
the wrong p dependence. In order to obtain the
correct dependence, we must, at the same time,
analytically continue the group SU(2) to its non-
compact version, SU(1, 1). This is done simply
by introducing the operators

I, = —s x—+y—

These operators satisfy the SU(1, 1) commutation
relations, [I„,I, ] =iI„(I„I, ] = iI„, [I„I„]
= —iI, . Furthermore, instead of spherical co-
ordinates, we introduce hyperbolic coordinates,

x = r sin 6jcoshp, y = r sin 6sinhq,

z =rcos 0,

where 0 +y & ~. The sphere of radius r is thus
continued to the hyperboloid x' —y'+ z' = r'. We
now solve the set of equations

II%, « = E,0 ~
", C4, « =j (j + 1)4~ «, (5)

where C is the Casimir invariant of SU(1, 1), C
= —I„'+I,' —I,', and II=I ', E„=k'. This Hamil-
tonian has a continuous spectrum characterized
by the continuous eigenvalues, 4, of the noncom-
pact generator, ' I,. Using (4) we still find I,
= —i &/&cp, so that the realization of Eq. (5) in
hyperbolic coordinates separates, 4, «(6, q)

we obtain the set of equations

II+, =E 4, , C4, =j(j+1)4,".
These equations can be realized in spherical co-
ordinates (r, 6, y), where the operators J„,J„J,
have their usual form obtained from J =r x(—IV).
The solutions then separate and are given by
4, "(6, p) ~e™~P,"(cos 6), with energies I' = —m'.
The a,ssociated Legendre functions P, (cos 6)
satisfy a well-known differential equation which,
upon the substitution cos 6=tanhp (- ~ & p &+ ~),
transforms to the Schrodinger equation for the
bound states of the Poschl-Teller potential,

The functions If, «(p) are obtained from the Le-
gendre functions by analytic continuation, R, "(p)
cc P, '"(tanhp).

It is interesting to note that the scattering, 5,
and transfer, iVi, matrices for this problem can
be written in closed form. In order to do this,
it is sufficient to consider the asymptotic form of
the solutions R, «(p) as p-+~. For any localized
potential, one can write the most general scatter-
ing solution at p -+ ~ as

R(p) -A,e'«~+B,e '«~, p ——

A(p) -A,e'"+B,e "~, p -+
The scattering matrix S transforms the two in-
coming waves with amplitudes Ao By into the two
outgoing waves with amplitudes Bo Qy For a
real potential, conservation of flux ~A, ~

'+ ~B, ~

'
= ~A, ~'+ ~B, ~' implies unitarity of S. Thus S is a
U(2) matrix. Similarly, the transfer matrix M
transforms the amplitudes at p - ~ Ay By into
the amplitudes at p -+ ~, A„B,. Since ~A, ~

'
—jBpl =

lA& I' —IB, I' M is quasiunitary and since,
in addition, detM--1, M is an SU(l, 1) matrix.
The matrix elements of M ean be obtained from
those of S and vice versa. One finds that, for
the Poschl- Teller potential,

1.(fa) r(1+ m)
F(1+ N+ j)F(ik —j) '

r(e) r(1 —m)
1"(-i)1(j+1) '

(8)

For a scattering potential, ivl contains equivalent
information to h. However, it is the transfer ma-
trix Al which is naturally generalized to the ease
of periodic potentials.

Our discussion so far has been confined to cases
that can be described by a dynamical symme-
try, "i.e. , cases in which the Hamiltonian is
written in terms of invariant operators of a com-
plete chain of groups, SU(2) D SO(2) and SU(l, 1)
&SO(l, 1), respectively. We come now to the
most general case. In order to illustrate this

cc p'« ~If, «(cos 6), and the functions R, «(cos 6)
satisfy an equation, which, after the transforma-
tion cos&=tanhp yields the Schrodinger equation
for the scattering states of the Poschl-Teller po-
tential with momentum jg,

~

~

1)
B,«(p) =a'~, «(p).

874



50, NUMBER 12 PH»ICAAL REVIEW LETTERS 21 MARCH 1/83
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matrix of the periodic potential V(p) =j(j+1)8
xsn'(p, z). This transfer matrix is still a SU(1, 1)
matrix.

In conclusion, the examples discussed in this
paper suggest that an algebraic treatment of
scattering problems and crystal band structures
similar to that of bound-state problems may be
possible, and that closed forms for scattering
and transfer matrices can be obtained when a
dynamical symmetry arises. A detailed presenta-
tion of the group-theory approach to scattering in
one dimension, including other families of solv-
able potentials associated with a group, such as
the Morse potential (extensively used in molecu-
lar physics), can be found in Ref. 12. Our ulti-
mate aim is to apply the group-theoretical de-
scription of scattering to atom-atom and nucleus-
nucleus collisions .
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