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Chaos in a Nonlinear Driven Qscillator with Exact Solution
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A nonlinear oscillator externally driven by an impulsive periodic force is investigated.
An exact analytical expression is obtained for the stoboscopic or Poincare map for all val-
ues of parameters. The model displays period-doubling sequences and chaotic behavior.
The convergence rate of these cascades is in very good agreement with Feingenbaum theory.

PACS numbers: 05.40.+j, 03.40.-t

The existence of period-doubling bifurcation and chaos in nonlinear externally driven oscillators has
been studied by many authors. A lot of models involving both additive excitations' and parametrical
ones' were numerically investigated with the restrictions imposed by the numerical integration of the
equations of motion. As a consequence the results do not present the precision that is habitual in simu-
lation involving unidimensional and multidimensional discrete mappings. ' In this Letter we present a
model of a forced nonlinear oscillator which allows us to obtain an exact analytical expression for the
stroboscopic map' (analog to the Poincare surface of section for autonomous systems). To our knowl-
edge this is the first model that is not piecewise linear in which such exact derivation has been per-
formed. By making use of the mentioned map we are able to investigate the stability of periodic solu-
tions as a function of parameters and to calculate the convergence rate of the cascade of period-dou-
bling bifurcations which leads to chaos in some regions of the parameter space.

Consider the equation

x'+x(4bx - 2a) + b2x - 2abx'+ (~02+a2)x= furs 5(cosmist) = Vs+„5(t-nTs)

which can be thought of as modeling an electronic oscillator tuned with nonlinear elements and having
its frequency synchronized by means of an external impulsive periodic signal. In (1) ~o =2m/T, is the
proper frequency of the system, a and b are constants, and ~x=2m/Ts and V~. are the frequency and
amplitude of the driving pulses, respectively. If Vs=0, (1) has the general solution

b 1 a 20x(t)=cos(a t+y)IAe "+2 ), , 1+—cos(a toy) —cos(x t+rp)+2si (ne t+p))0- 0 (dp

2a—e '" 1+—cosy —cosy+2siny
(dp p

(2)

where A and y are integration constants which are expressed as

A = u), '[x,o,, +(o,,a —x,' —x,)'] -',

siny =A'~'~, '[x,a -x,'b -x,], cosy =x,~,[x,~,'+(~,a -x,' -x,)']
(3)

where x, =x(0) and x, =x(0) are the initial conditions. Thus we have for the autonomous system the fol-
lowing two parametrical equations as solution:

x(t) =y(x„x„t),x(f) =g(x„x„f), (4)

where f and g are given in terms of elementary functions by replacing (3) in (2) and its derivative.
When Vs w0 the only effect of the external force is to produce a discontinuity in the first derivative of

x(t). The height of this jump is Vs. Therefore the solution of (1) in the driven case is

x~(t) = Q f (x~(nTs), x(nTs) + V~, t -nTs)H(t —nT~)H((n+1)Ts —f ),
n=p

x~(f ) = Q g(x p(&Ts), x(&&s) + V@, t 'a7s) +(f -I1Ts)H((n + 1)T@ —t),
n =O
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FlQ. 1. (a) Stability zones for periodic solutions in
the plane (T@,VE) with a = 1.57079, b = 15.7079, a
= 1.57079. (b) Blowup of the rectangle marked in (a).
Numbers inside circles indicate the periodicity which
is stable in the corresponding zone. Broken lines
indicate lack of good resolution. CH label regions of
chaotic behavior.

where H is the unit step function. From (5) it is
straightforward to obtain the stroboscopic map by
sampling the trajectory at regular time intervals
coincident with TE. Then the map can be written

x z((n + 1)T~) =f(x z(nw ~), x z (nv~ ) + V~, &z ),

x~((n+1)T~) =g(x~(n~~), x~(n7. ~) + V~, T~) .
With the aid of this map we develop a numerical

investigation. The first interesting result is the
subharmonic entrainment spectrum shown in Fig.
1. There the zones in the (V~, T~, ) plane are
drawn where the stable output of the oscillator is
periodic with period commensurable with T~. At
this regime of dissipation this spectrum is invari-
ant under the shift T~ - TE+nT, . Each zone which
touches the TE axis at the value ~, is character-
ized by the rational number T, /T, =p. /q (p and q
& N are, respectively, primes). '

q is equal to
the periodicity of the response and P is the num-
ber of oscillations that the system would perform,
if the external force vanished, in a time interval

The sizes of the various entrainment regions

are ordered in a way related to a concept from
number theory, Farey sequences. An n-Farey
sequence 5„is the increasing succession of ra-
tional numbers whose denominators are less than
or equal to n. ' We call two rational numbers
"adjacent" if they are consecutive in E„for any
n. A necessary and sufficient condition for p, /q,
and p, /q, to be adjacent is I p, q, -p, q, I=1.

A rational number p'/q' belonging to the open
interval (p,/q„p,/q2) where p, /q, and p2/q2 are
adjacent will be called "mediant" if there is no
other rational in the interval having smaller de-
nominator. It is known that p'/q'=(p, +p,)/(q,
+q, ) and is unique. The observation of Fig. 1 and
other enlargements not shown here leads us to
the following conjecture: The synchronization
zone characterized by a mediant number of two
adjacent rationals is the greatest of all the zones
situated in between those characterized by them.
In addition it has, obviously, the least period.

Figure 1(b) shows that the more important en-
trainment regions have a similar form. They
resemble cornucopias, each with the tip attached
to the horizontal axis and the other end converg-
ing to a point inside of the perfect entrainment
region. It is remarkable that all these entrain-
ment regions are of width increasing with V~
when it is less than about 1.0 and above this value
each of them decreases in width and folds on it-
self surrounding a region Imarked CH in Fig.
1(b) ] which presents a period-doubling route to
chaos."

Having found such a behavior, we test the Fein-
genbaum universality. We make use of the fact
that, because of the high dissipation, the Jacobian
of the stroboscopic map is very small, which en-
sures that the map neighbors a unidimensional
map of the limit cycle on itself. Thus we search
for the values of the parameters at which the
"critical" point of this "unidimensional" map is
periodic. " In Table I the values of T~ (with V~
=1.625) are displayed at which &x„,, /ck„evaluat-
ed at a stable q-periodic point vanishes, for all
q = 2" with x from I to 10. We have named them
T„.The next two columns list the 5„=

I
r„-T„-,I /

I T, I
—T, I

and 5„'=
I 5„—~„,I /I 5„+,—5„I.since

6' is the convergence rate of 5„,it allows us to
extrapolate the value of the lim„6„=5. The
result is shown in the last column. Notice that it
agrees with the exact value to five decimal digits
and this accuracy has been achieved without re-
fined numerical techniques.

For most of the points inside the regions CH
the response of the oscillator becomes chaotic.
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TABLE I. Values obtained through calculations of
the convergence rate of the period-doubling sequence
at V& = 1.625 and the other values of parameters as in
Fig. 1 but with 10.6& Tz& 10.8. Compare with the exact
value of the Feigenbaum constant & = 4.6692016.. . .

~extrap

1 10.743 617 13597
2 10.703 113442 83 3.310197
3 10.690 877 398 97 4.231 186
4 10.687 985528 98 4.557198
5 10.68735095763 4.644584
6 10.687 214 33159 4.663 855
7 10.687 185 036 92 4.668 057 3
8 10,687 178 761 369 4.668 958 9
9 10.687177417267 4.6691446

10 10.687 177 129398

2.825
3.731
4.535
4.586
4.658
4.855

4.735 8331
4.676 595 5
4.669 306 1
4.669 243 2
4.669 1796
4.669 195 6

However, there also exist regions contained inCH
for which the response is entrained. We have
found periodicities other than ~". The occurrence
of these periodicities ensures, as is known, "'
the occurrence of chaos for iterated unidimen-
sional maps.

Finally we stress the compatibility of the geom-
etry of the stability regions shown in Fig. 1 with
the idea that period-doubling bifurcations are
related to the overlap of synchronization horns
in the parameter space. It is in fact remarkable
that the beginnings of all period-doubling chains
in Fig. 1(b) are situated in the neighborhoods of
the points at which prolongations of the boundar-
ies of two adjacent regions of stability would
intersect. The conjecture of this connection has
been made already in Ref. 13 in a different con-
text (see also Glass and Perez").

As a conclusion we want to stress the adequacy
of the model presented here as a numerical labo-
ratory for continuous dynamical system. For
example, it is easy to check any universal con-
stant (as has been done with 5) as well as the
behavior of the power spectrum" and statistical
properties of the chaotic regime. Details of this
calculation will be given elsewhere.
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