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A mean-field theory for the diffusion-controlled cluster formation is presented by
considering the competition among the different portions of a growing cluster for the
incoming diffusive particles. This competition is shown to introduce a screening length
which depends inversely on the density of the cluster. The Hausdorff dimensionality 0
of these clusters is shown to be (d2+1)/(d +1) where d is the Euclidean dimensionality.
This result is in excellent agreement with that of the computer simulations of Witten
and Sander and of Meakin.

PACS numbers: 68.70.+w, 05.70.-a, 82.70.Dd

In an attempt to describe the growth of clusters
of small particles, Witten and Sander' recently
simulated a diffusion-limited aggregation in 4 = 2

on a computer and compared with other models
such as Eden growth, ' dendritic growth, ' random
animals, and percolating clusters. ' Meakin' also
has independently performed simulations of dif-
fusion-controlled cluster growth similar to those

of Witten and Sander for d=2, 3, and 4. These
simulations start with a single seed particle at
the origin of a lattice. A second particle is added
at some random site at a large distance from the
origin. This particle undergoes a random walk
on the lattice until it reaches a site adjacent to
the seed and becomes part of the growing cluster.
A third particle is then introduced at a random
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distant point and it walks randomly until it joins
the cluster, and so forth. The simulations show
that the clusters are critical objects having
scale-independent correlations over an arbitrari-
ly large range of distances and with the Hausdorff
dimension D of 1.68 + 0.07, 2.51 & 0.26, and 3.32
+0.10 for d=2, 3, and 4, respectively. D is de-
fined for an N-particle aggregate by

N~R~,

where R is the radius of gyration of the cluster.
I present a mean-field theory in an attempt to

calculate D of these objects. The most important
aspect of the growth of these clusters is that the
various portions of the growing clusters compete
for the incoming diffusive particle. The propa-
gator for the diffusion of the individual particles
has long-range inverse distance dependence. The
competition between the various centers of the
growing cluster for the incoming diffusing par-
ticles screens this long-range distance depen-
dence. I calculate the screening length ( by con-
sidering a large collection of small spheres with-
in the coherent-potential approximation (CPA).
I then deduce D by calculating the effective rate
constant for the cluster to absorb the screened
incident diffusive field.

First we consider the effect of the competition
among N randomly distributed absorbers in a
volume V for the diffusing density field from the
macroscopic boundary. For simplicity, the ab-
sorbers are taken to be spheres of radius a. Let
d=3; the generalization to other dimensions will
follow. At steady state, the rate of production of
density field due to external sources is just com-
pensated by its removal by the absorbers. In the
presence of the absorbers, the diffusive field

satisf ies

D0V2u(r) = y(r) +Q jdQ,. 6(r —R,.)o,(Q,.), (2)
j=l

where D, is the diffusion constant of the density
field and y(r) is an auxiliary field to account for
external boundary effects. y(r) defines the den-
sity field in the absence of any absorber. The
second term on the right-hand side of Eq. (2)
accounts for the presence of the absorbers and
gives the net depletion of the density field due to
all the absorbers. The jth absorber absorbs the
density field with strength o,.(Q;) at any space
point on the surface of i, i.e. , R,. =R,.'+r,. (Q,. ),
where R is the position vector of the center of
mass of i and r, (Q, ) is the position vector of this
surface point from R,'; 0,. denotes the orientation
of r,

Equation (2) expresses the microscopic density
field at any space point r in terms of the various
J o,. ) and the problem reduces to determining
these J o,. }in terms of y. This is accomplished
by employing the boundary condition of complete
absorption of the density field at the surface of
the absorbers,

u(R, ) =0. (3)
More general boundary conditions can be used
without any conceptual difficulties, but we re-
strict ourselves to this simple boundary condi-
tion. Although CPA, which is used below, is
meaningful for the case of weak absorbers, the
qualitative results are not affected within CPA
whether Eq. (3) or a. more general boundary con-
dition is used in the actual calculations. The
above boundary condition is directly related to
the sticking probability in Meakin's simulations.

As we are interested in the macroscopic aver-
age density field, we average Eq. (2) over a, dis-
tribution of (R J to obtain

D, V &u(r)&=y(r)+& P J dn, ~(r- R, )o,. (n,. )&=p(r) J d'r Z(r--r-)&u(r )&,

where the angular brackets denote the average
over the appropriate distribution function for the
absorbers. In the second equality of Eq. (4) a
macroscopic kernel Z has been defined so that
Eq. (4) has the form of a linear law. With the
introduction of the Fourier space transform of a
field f(r) asf(k) = J d3rf(r) exp(-zk r), Eq. (4)
becomes

[Dok2+ Z(k) J &u(k) &=f(k) .
The mathematical structure of Eq. (5) implies
that the k' part of Z (k) gives the change in the

1 d'Z(k)
2 dk k' =0

(6a)

Z(k =0) =-D, ~-'(p). (6b)

Z(k =0) is often called the rate constant, ' K, for

!diffusion constant D(p) —D„where D(p) is the
density-dependent diffusion coefficient with p=N/
V. Also, the constant term in Z, i.e. , Z(k = 0),
defines the screening length $(p) for the diffu-
sion:
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Z =NZ, (Z), (7)

the requirement of self-consistency leads to Z.
Z, is calculated as follows. The equation for

the density field, when a single absorber is pres-
ent in an effective medium, is

D, V'u(r) + fd'r' Z(r —r ') u(r ')

the diffusion-controlled process. Thus, a knowl-
edge of the kernel Z leads to the values of the
diffusion and rate constants for a given p. Here,
we confine ourselves to the calculation of $ al-
though caution must be exercised regarding the
self-consistent dependence' on D(p).

Although Z(k) can be calculated as a diagram-
matic series expansion in p and then summing the
diagrams, I present a simple effective-medium
argument to obtain Z(k). By considering a single
absorber which absorbs an effective field u(Z(k)),
where Z(k) is yet unknown, we calculate Z» the
contribution of one such absorber to Z(k). Since
Z(k) is N times Z, which in turn depends on Z(k),

Combining Eqs. (8) and (9), we get

O = jd'~'G(R, —r') + fdQ, ' G(R, —R, ') o,(Q, '),
(io)

where

G(r) = J d'k(2zz) ' G(k) exp(+zk. r),

G(k) =[D Iz' + Z(k)]

By defining the inverse operator G ' on the sur-
face of the sphere 1 according to

J dQ, ' G '(R„R,') G(R, ', R, ")

= 6(R, -R, -)

we get from Eq. (10)

&z(Q, ) = —J d r' dQ, ' G '(Q„Q, ') 6(R, ' —r')u(r'),

(13)
=f(r) +fdQ, 5(r -R) o,(Q,)

with the boundary condition

u(R, ) =O.

where

u(r) = fd'r' G(r —r')f(r').
(9)

Substitution of Eq. (13) into Eq. (8) yields

u(r) =u(r) —f d'r'dQ, dQ, '5(r —R,)G '(Q„Q,')5(R, ' —r')u(r').

Therefore Z, (k) follows as

Z (k) = V ' Jd(r -r') dQ, dQ, 'exp[-ik ~ (r -r')]5(r-Qz)G '(Q„Q, ') 6( Q,
'-r')

= V 'J dQ, dQ, ' G '(Q„Q, ') exp[-ik ~ (Q, —Q, ')],
where G ' depends on Z through Eqs. (11) and (12) and V appears as a result of the averaging over the
position of the center of mass of the single sphere over the whole volume. Expanding G ' and G in
spherical harmonics and combining Eqs. (7), (11), (12), and (15) we get

z(a =o) =4~i G,-',
with

(i6)

(i8)

$ '-pa', d=3. (19)
Thus the competition effect between the various absorbers in a certain volume for the incoming diffu-
sive field leads to an inverse density dependence for the screening length within the CPA description.
It is to be noted that if the competition were completely absent then there is no screening ($ -~).

The results of Eqs. (18) and (19) can be generalized for other d~ 2. The analysis is similar to the
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G, = —JdQ, dQ, ' J d'k(2zz) '[Dk'+Z(k)] 'exp[ik ~ (Q, -Q, ')]=(Da) 'I ~,(a/g)E, ~,(a/j), (17)

where I~ and K~ are the modified Bessel functions of order p. In getting the second equality of Eq. (17),
Eq. (6b) is utilized and the local structures of the problem reflected by the large-0 part of Z have been
ignored. The k' term of Z only alters D, as pointed out above and does not change' the power-law de-
pendence between $ and p.

Substitution of Eqs. (17) into Eqs. (16) and (6b) gives

( '=8zza'p( '[I -e x(p- 2a(/)], d=3.
For very large N, $ becomes small so that the dependence of $ on p and a is
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above and the result is

Z(k=O) -p
j.

dk, , J, d0$ d0'sin' '0sin' '0'exp[-ika(cos0-cos0')] (20)

a'-'/f„, ,(a/()A-„, ,(a/()
-p '-'(-'[I+ O(t/a)], (22)

where Eq. (22) is obtained by considering the large-N limit. The use of Eq. (6b) in Eq. (22) gives the
inverse dependence of $,

1 pgd-1 (23)

for all d~ 2.
I now present a mean-field argument to calculate D. Consider an aggregate of X constituent spheres

each of radius a. Let R be the unknown radius of gyration of the aggregate. Since $ is the screening
length, we perform a coarse graining over a, distance ( so that the renormalized radius of the aggre-
gate is Ra/$. Taking the cluster as a single sphere of radius Ra/$ absorbing the screened diffusive
field, the rate constant is given by the d-dimensional version of Eq. (15) with the radius a replaced
by Ra/$,

bo 1K- V dk, , J d0J d0'sin' '0sin' '0'exp[-ikRa& '(cos0 —cos0')] -( 'R ',
0

(24)

8R/st =&R . - (25)

Since every particle in the computer simulations
of Witten and Sander and of Meakin is made sure
to be absorbed by the growing cluster before the
next particle is introduced into the system, the
role of the time variable is played by N in this
problem In view. of Eq. (1), K follows from Eqs.
(24) and (25) as

A -I/N- g-'R '. (26)

Because $- p '-R'/N [see Eq. (23)], it follows
from Eq. (26) that

where the large Nlimit -is taken as in Eq. (22)
and V=R is utilized. Since D, and a are micro-
scopic quantities independent of N, they are left
out in Eq. (24). A is defined also as a phenomeno-
logical rate constant for the cluster growth,

CPA. (iii) The overall growth of the cluster does
not depend on the structural details within dis-
tances of the order of the screening length.
(iv) The time variable is proportional to the
number of particles in the cluster (since the de-
tails of the actual dynamics of any particle dur-
ing the period between its introduction into the
system and its absorption are irrelevant in the
simulations). The main reason for the agreement
between our CPA (where density fluctuations are
ignored) and the simulations is perhaps due to
the very low densities in these ramified clusters.
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D = (d + 1)/(d + 1). (27)

This result is in excellent agreement with that of
the simulations quoted earlier. However, for
higher dimensions, our value of d/D does not
support the universal value of ~5 suggested by
Me akin.

In summary, I present a simple mean-field
theory to describe the fractal nature of the diffu-
sion-limited cluster growth. The main assump-
tions are as follows: (i) All particles of the grow-
ing cluster compete for the incident particle at
every stage of growth. (ii) The collective behav-
ior due to this competition is obtained by treating
the various particles as small spheres and using
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