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?INote that the result Py ’E follows directly if the
change in the charge density, Ap, is proportional to
the electric potential £v5. This is to be expected, e.g.,
at low field, when eEvy/kpT <<1, when Ap=1—eEr,/
kgl'. In principle it could also apply at higher fields
and sufficiently high frequencies, but the conditions for
this are rather stringent and complex.

22Ror d =3 gold samples, characterized by grains of
size a ~100 10\, with § ~50a, at T ~ 300 K, we estimate
D (&) ~1072 em?/sec. The characteristic crossover fre-
quency is thus @ =(4/£)%*%~10" sec™!. The trivial upper
limit is 1/75~10' sec™!, leaving a wide frequency
range for experiments. Details will be published else-
where.

2Quantum localization behavior is expected for w= 1012
sec™!; see Ref. 14.
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On the basis of a numerical study of a mean-field free-energy surface, the authors pro-
pose that an isotropic Heisenberg spin-glass has no irreversibility. The field-cooled and
zero-field—cooled states are the same and magnetic hysteresis is absent. The authors

- show how Dzyaloshinsky-Moriya and uniaxial anisotropy effects lead to irreversibility.
Hysteresis loops exhibit sharp jumps at constant field only when both microscopic anisot-
ropy and a ferromagnetic tendency are present.

PACS numbers: 75.10.Jm, 75.30.Gw
There have recently been a number of theoreti-
cal studies of the Heisenberg spin-glass, both
with! and without®? anisotropy. Because there
exist in the laboratory vector spin-glasses exhib-
iting a wide variety of anisotropy interactions, it
is now possible to test theoretical predictions.
Monte Carlo simulations* on Ruderman-Kittel -
Kasuya-Yosida—interaction Heisenberg spin-glass
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suggest that microscopic anisotropy is necessary
in order to obtain a cusp in the spin susceptibility.
Theoretical studies of the infinite-range isotropic
Heisenberg model find a spin-glass phase and the
associated replica-symmetry breaking® (which is
presumed to be related to irreversibility). By
contrast, a working hypothesis of phenomenologi-
cal approaches® is that macroscopic irreversibil -
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ity exists only in the presence of microscopic an-
isotropy.

We demonstrated® that a study of the behavior of
the minima of the free-energy surface as func-
tions of temperature 7 and the external field H
could explain the nature of reversible and irre-
versible behavior in an Ising spin-glass, It is the
purpose of the present paper to extend this nu-
merical study to the Heisenberg case with and
without anisotropy effects and to report some ob-
servations which show that there are qualitative
differences between isotropic Heisenberg and Is-
ing spin-glasses. As discussed previously,® the
reaction term in the free-energy surface F{m;}
leads to unphysical minima to which the system
will readily flow. (Here m, is the thermal aver-
age of the vector spin at the #th site.) Conse-
quently, we can consider only the mean-field
terms. Despite the clearly oversimplified ap-
proach, it represents a necessary first step in
understanding the relationship between micro-
scopic anisotropy and irreversibility.

Our Hamiltonian consists of an isotropic random
near-neighbor exchange interaction J;; with Gaus-
sian distribution of width J and mean J;, a uniax-
ial anisotropy term 27:D(S;%?, and a Dzyalqghin—
sky-Moriya (DM) anisotropic interaction 2; D;;
-8;x8,. HereD,;"=-D," is given by a random
delta-function distribution 8(D;"+D’) and p,v are
Cartesian coordinates. When uniaxial anisotropy
is absent, the variational condition 8F/3§1,- =0 re-
quires

m; = (/I RDB (1K), @)

where B is the generalized Brillouin function for
spin S and 2" =23, ,J;" 'm ;" + H6,,. The diagonal
elements of J;;"” are J;; whereas the off-diagonal
elements are simply related to D;; within mean-
field theory. All values of D', D, T, and the field
H are in units of J. When uniaxial anisotropy is
included, Eq. (1) may be generalized for the quan-
tum spin case S=1 (which value of S we use
throughout this paper) by diagonalizing the matrix
representation of the 3 X3 mean-field Hamiltonian
and using a numerical procedure to solve the re-
sulting cubic equation. It should be noted that at
zero temperature Eq. (1) implies that each m; is
parallel to 'ﬁi. This criterion for metastability
coincides with that derived on more general
grounds by Ma,’ and used in Monte Carlo simula-
tions.? We solve Eq. (1) and its appropriate gen-
eralization (D #0) iteratively for spins on a sim-
ple cubic lattice. For each new (I',H) we started
our iterations at the {m;} corresponding to the

minimum of ¥ evaluated at the limit values of the
previous T or H. We then changed {_I;l,} by using
an updated sequencing of the sites ¢ until we got
convergence at the nth iteration defined by®

23 (f;lin - ~r;1z'n R (_I;l,-" )2<1071°,

For convenience we also define @, and €., the
longitudinal and transverse order parameters
(referred to the field direction): 2 ;" m"=Q".
The spin-glass transition temperature T', is de-
fined as the lowest temperature at which @, van-
ishes. It was necessary in all our calculations to
apply a small (~ 10”%J) transverse field in order
to avoid supercooling into a longitudinally ordered
state of higher free energy.

Our results for the Heisenberg case with and
without anisotropy have many of the same fea-
tures we reported earlier for the case of Ising
spins. As we cool at constant 4 we always stay
in the same minimum.® However, changing A
generally leads to the disappearance of a mini-
mum and thus to “minima hopping.” The unique
aspect of the isotropic Heisenberg system is that
upon hopping the system settles into a minimum
which is the field-cooled (FC) state at the appro-
priate A (arbitrarily positioned in the x-y plane).
This is clearly seen by studying M,=2;m;* vs H
which shows macroscopic reversibility but micro-
scopic irreversibility (deriving from uniform
spin rotations). In the isotvopic case, because of
the ready accessibility (associated with votation-
al degenevacy) of the FC state, theve is no meas-
uvable ivveversibility. These results are not
necessarily in conflict with those of Ref. 3 be-
cause these authors® used the infinite-range mod-
el and only made a loose association between the
zero-field—cooled (ZFC) susceptibility and that
obtained in linear response theory. The contrast
between Ising (which show clear hysteresis®) and
Heisenberg spin-glasses mirrors the (mean-field)
calculated hysteresis curves of nondisovdered
ferromagnets. In the second case, hysteresis is
absent because Heisenberg spins can rotate freely
to “follow” the field.

In Fig. 1(a) are plotted the FC and ZFC (indis-
tinguishable) magnetizations (normalized to the
maximum value of S=1) for the isotropic Heisen-
berg case as a function of temperature for J,=0,
N =10%, and various /. Once anisotropy of any
kind is introduced the situation is radically
changed; there is hysteresis, remanence, and,
for small enough A, a splitting of the FC and
ZF C magnetizations as a function temperature.
The latter are plotted in Fig. 1(b) for A =0.5 and
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FIG. 1. Temperature 7' dependence of field-cooled
and zero-field—cooled magnetization for (a) isotropic
and (b) anisotropic interactions. Anisotropy constants
D and ferromagnetic exchange J, are as indicated.
Squares denote pure DM case I’ =0.25, Jy=0. (c) Hys-
teresis loops for various Dzyaloshinsky-Moriya inter-
actions, I¥, for J,=0, (d) Temperature dependence of
longitudinal and transverse order parameters for sev-
eral (uniaxial) D, J,=0.

different values of D and J,. The last case
(squares), D’ =0.25, corresponds to a pure DM
anisotropy and the first three to pure uniaxial
anisotropy. For the uniaxial case with D =0.25,
we get semiquantitatively similar behavior as in
the DM case. Because of the numerical complex-
ity (particularly in the uniaxial case), we were
forced to study somewhat smaller systems than
for Ising spins (V =6° and 8 for the uniaxial and
DM cases, respectively). Consequently we had
to consider larger values of 4 (to make the finite-
size—induced zero-field magnetization insignifi-
cant). This in turn required somewhat larger
values of D than may be physical, to obtain a sig-
nificant splitting of the FC and ZFC magnetiza-
tion. Despite these limitations, the results
shown here illustrate clearly the systematic de-
pendence of the macroscopic variables on the
various parameters in the Hamiltonian.
Hysteresis loops for the pure DM case at T
=0.2 and D’ =0.25,0.5 are shown in Fig. 1(c), and
in Fig. 1(d) are plotted (upper curves) @, and
(lower curves) @, for different values of the uni-
axial anisotropy D at #=0 and J,=0. From these
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FIG. 2. Hysteresis loops for uniaxial anisotropy (at
D =0.4) for various values of J; at low T (T'=0.2).

can be determined the characteristic value of T,.
We have found a weak quadratic dependence of @,
on H? (as in previous theories®). It follows from
this and Fig. 1(d) that for D =0.8 and J,=0, Q,
turns on at 7'~ 2.0. For the case D =1.2, J, =0,
the corresponding temperature is T~ 1.2, These
temperatures do not correlate with any structure
in the T' dependence of the FC and ZFC magnetiza-
tion. We find that irreversibility sets in (approxi-
mately) when longitudinal spin-glass order be-
gins. The maximum value of D at which @, #0
for all T is roughly 2.0, which is considerably
larger than that found for the infinite-range
model.?

An interesting feature which is seen in hystere-
sis experiments in the dilute spin-glasses con-
taining Mn,’ and in more concentrated AuFe,!° is
the sharp reversal of magnetization at fixed 4
and low T'. These hysteresis loops are quite dif-
ferent from our previously published® Ising re-
sults, which resemble dilute AuFe. Qur Fig. 1(c)
shows that weak microscopic DM anisotropy alone
does not yield the sharp magnetization reversals
seen experimentally. Similar results hold for the
uniaxial case which is plotted in Fig. 2 (J,=0) at
T =0.2. However, once J,>0, we find sharp mag-
netization reversals. These are shown in the
spin-glass phase for uniaxial anisotropy D=0.4
(/,=0.25,0.50) and in the ferromagnetic phase
for J,=1.0. Similar results are obtained for the
DM case, although in this case the loops are
found to be much narrower (by factors of 3 to 5).
Furthermore, as expected, for the DM case we
find that a larger value of J, is needed to obtain
the same degree of sharpness of the magnetiza-
tion reversal as in the uniaxial case. The notion
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that some ferromagnetic interaction is necessary
to explain hysteresis in CuMn has been previously
invoked.'! In AuFe a ferromagnetic tendency is
unambiguously present and the change in the
shape of the loop'® as the Fe concentration in-
creases corresponds roughly to the trends ob-
served in Fig. 2 as J, increases. It should be
noted, however, that the change in shape of the
loop as a function of J, cannot be ascribed defi-
nitely to a change in this parameter only. It
could derive from the indirvect effect of J,, through
the value of the remanent magnetization, which
was very large in the cases we considered.

A symmetrical field sweep, as shown in the
figures, from large positive to equally large nega-
tive H values does not produce the so-called “dis-
placed loop” characteristic of Mn-containing al-
loys.* Therefore, we have searched for displaced
loops by starting at large positive # and revers-
ing at a smaller negative value. Our results sug-
gest that displaced loops are present ornly for the
DM case. This is consistent with earlier claimg!?
which suggested that displaced loops would occur
for unidirectional anisotropy, as in the presence
of DM interactions. While it was difficult to gen-
erate loops that looked similar to CuMn data, we
did find, as expected, that in the second half of
the cycle M changes sign before 4.° Presumably
the discrepancy between theory and experiment is
due to the necessity of using large fields and to
relaxation effects, some of which are not includ-
ed here.

Phenomenological approaches'® have proposed
that the spin-glass free energy consists of a
“macroscopic anisotropy” and a remanence term.
Our conclusion here is that a necessary (but not
sufficient) condition for obtaining remanence, and
irreversibility in general, is that microscopic
anisotropy be present; this can be tested for sys-
tems such as those discussed by Albrecht ef al.**
Therefore, it is unnatural for us to view the
remanence and “macroscopic anisotropy” as in-
dependent mechanisms which separately contrib-
ute to hysteresis, etc. We note that our hystere-
sis curves can display either a smooth, gradual
or a sharp boxlike shape. These two forms are
often associated with the relative size of the

macroscopic anisotropy and remanence term. A
more relevant parameter, from our microscopic
viewpoint, is the ratio of the microscopic anisot-
ropy to the net ferromagnetic exchange interac-
tion.
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