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Thermodynamics of the Massive Thirring Model: The Discontinuity in Soliton Mass
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A new formulation is presented for the thermodynamics of the massive Thirring model
in the attractive-coupling regime. A certain controversy between previous theories is
resolved and an overall understanding of the thermodynamics is reached. In particular,
it is shown that the soliton mass is discontinuous with the coupling constant Bt finite
temperatures.
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The thermodynamics of the massive Thirring
model (MTM) has recently attracted a great deal
of theoretical interest. ' ' Fowler and Zotos' first
investigated the thermodynamic properties of the
MTM for integral coupling constants Pp vz using
the method and formalism developed by Takahashi
and Suzuki' for the XXZ and A'FZ spin chains.
Later, Zotos' extended this approach to study the
MTM thermodynamics for general coupling con-
stants P, = v, +1/v, with v, and v, being integers
greater than 2. Imada, Hida, and Ishikawa' also
used the same approach to study the MTM ther-
modynamics for coupling constants slightly away
from the rational points, i.e., P, = v, +0. A con-
troversy seems to exist between these studies in
that basic equations obtained in Befs. 1 and 3 are
slightly different, although it was proved by
Araki' that the free energy of this system is an
analytic function of the coupling constant. This
controversy can be resolved, once an overall
understanding of the MTM thermodynamics is
reached, as will be demonstrated below. In this
paper, we present a new formulation of the MTM
thermodynamics for general coupling constants
P, = v, +1/v, . The approach is based on the Bethe
&~at@ (BA) solution of the MTM found by Berg-
knoff and Thacker (BT),' and Korepin, ' and the
thermodynamic analysis given by Yang and Yang. '
An application of this approach to the weak sine-
Gordon (SG) coupling limit (P, = ~) was reported
previously by one of us (S.G.C.).' (Note that the
quantum SG is equivalent to the charge-neutral
sector of the MTM as shown by Coleman. ") The
basic equations obtained in this approach can be
shown to be equivalent to those of Zotos, ' after
some mathematical manipulations. Thus the
validity of both theories is confirmed. However,
the form of our basic equations is more illustra-
tive in that it is written in terms of physically
meaningful quantities, i.e., the renormalized
phase shifts for the breather-breather, breather-

soliton, and soliton-soliton scatterings. The
analysis of our equations shows that the basic
equations of Refs. 1 and 3 will lead to the same
free energy and breather masses, but different
soliton mass at finite temperatures. In other
words, at finite temperatures the free energy and
breather masses are continuous, whereas the
soliton mass is discontinuous at the rational coup-
ling constants P, = v, !

The first step in the present BA approach is to
find out allowed fundamental excitations in the
system and to quantize a general multiple funda-
mental excitation by imposing periodic boundary
conditions (PBC's) on each excitation in addition
to PBC's on the Dirac sea. The fundamental ex-
citations of the MTM were thoroughly studied by
BT' and Korepin. ' For the present case P, =v,
+ 1/v„' ' there are v, —1 kinds of breathers, v,
kinds of Korepin excitations (hereafter K excita-
tions), as well as holes in the Dirac sea. The
procedures used here are quite similar to those
described in a previous paper" for treating
breathers. We find that the PBC's on breathers,
holes, and K excitations can all be written in a
BA form of quantizing the associated physical mo-
menta, in terms of the renormalized phase shifts,
L,," (ith breather —jth breather), b, '" (ith
breather —hole), where i, j = 1, 2, . . . , v, —1, L""
(hole —hole), A " (mth K excitation —hole), and

„KK (mth K excitation —nth K excitation), where
m, n=0, 1, . . . , v, —1." The renormalized phase
shifts between breathers and K excitations are
found to be identically zero. The result of quantiz-
ing these fundamental excitations can be written
in a compact BA form,

where L is the system size, I~' is an integer,
and p,. (a) is the density of distribution for the ith
excitation in the rapidity n space (i and j run
over breathers, holes, and K excitations). We
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have introduced a convenient notation a ~ b
—=f"„do. 'a(o. ' —n)b(o. '). The P, (o) is the physi-
cal momentum of the jth excitation; it equals
LM, sinh(ya) for holes, 2cV1, sin[(af v)(2y —1}]
xsinh(ya) for breathers, and zero for K excita-
tions, where" M, = p, /(m- p) is the zero-tempera-
ture soliton mass in the unit of the zero-tempera-
ture free soliton ma, ss col, ' (for P, =2), p, =(P,

—1)m/P„and y= v/2p.
After rewriting the PBC's on the bare excita-

tion of the MTM in a BA form (1), we then apply
the method of Yang and Yang' for the BA thermo-
dynamics. The basic procedures are formally
the same as those reported in Ref. 4, except that
here we also include the K excitations. Subtract-
ing from Eq. (1) the same equation with n„' re-
placed by e~, ' gives

dPq(n)/du =2vsgn(j)[p, (o.)+p, (n)]++,. (8/8o)aq, . ~ p, , (2)

where sgn( j) = 1 for j denoting breathers, hole, and the 0th K excitation, and —1 for j denoting other
K excitations, and p, (u) is the density of "omitted u value" distribution. ' The factor sgn(j) comes
from the fact that the bare masses are negative for K excitations with j =1, 2, . . . , v, —1. This equa-
tion provides a relation between densities p, (o. ) and p,. (n), since dP, (u)/d. n are known functions. The
internal energy, entropy, and hence the free energy of the system can also be expressed as functionals
of densities p, (u) and p, (n) in the same manner as described in Eqs. (1) and (2) of Ref. 4. With use of
Eq. (2) the free energy can be expressed as functionals of p,. 's alone. Minimizing the free energy with
respect to independent variations of densities 6p,. gives [with p, (n)/p, .(u) =-exp(e,.(o.)/Z')]

e, (u) = E, (ct)+ (T/2n)g, . sgn(i)(8/8a)6, , * in[1+ exp( —e,. /T)],
where the Boltzmann constant is set equal to 1, the temperature is measured in the unit of the zero-
temperature free soliton mass, M, ', and E, (n) =(1/y)[dP, (e)/d n] is the physical energy of fundamen-
tal excitations.

Solving the coupled integral equations (2}and (3) we can find densities of fundamental excitations, the
free energy, and hence all the thermodynamic quantities. Equation (3) can be shown to be equivalent to
the basic equations of Ref. 2, after a long manipulation. Thus the validity of both theories is con-
firmed. However, we wish to comment that our equations are more illustrative than those of Ref. 2 in
that the physical meaning of the quantities ~,, ", A,. '", and 6"" as the renormalized phase shifts is
unambiguous, as they can be obtained independently from the 8-matrix factorization theory. " Two
things are worth mentioning before we proceed further. First, a compact expression for the free-en-
ergy density in the rapidity n space can be derived from Eqs. (2) and (3},

E(a) = —(yT/2m)Q, E, (n)ln (1+e.xp.[- e,. (n)/T]}.
Note that the summand in the right-hand side of
Eq. (4) is just the free energy of a free fermion
with the energy e,. (o). Furthermore, we can
show that the inclusion of K excitations does not
alter the previous proof' that the quantity e, (u)
represents the excitation spectrum at T w0."
Thus it is seen from Eq. (4) that the effect of the
phase-shift interaction between fundamental ex-
citations appears in the free energy only through
the thermal renormalization of hole and breather
energies. Second, it is noted that the hole con-
tribution in the free energy can alternatively be
represented as the soliton-plus-antisoliton con-
tribution. It is evident by symmetry that the
soliton and antisoliton densities are equal to each

other; that is, the charge neutrality is established
at any point in the rapidity space. Therefore,
we can replace holes and K excitations by solitons
and antisolitons at any point in the rapidity space.
Also note that K excitations do not carry free en-
ergies, but carry charges. Denoting the soliton
(antisoliton) energy as e'(o. ) we can switch the
representation from the hole to soliton-antisoliton
picture by the relation [cf. Eq. (4)]

1+exp(- E"/T) = [1+exp(- ~'/T)]'.

We now consider the limit v, -~, where the
integral equation for e„(u) in Eqs. (3) becomes
an algebraic equation (with q=—e/T):

7l„=in[1+exp(- q")] + Q 2mln[1+ exp(- q ")]+ (2n —1)in[1+exp(- q„K)]++ 2nln[1+exp(- q„K)]. (6)
rn &n m&n
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The solution to Eq. (6) can be found through a similar procedure as given by Johnson. " We obtain

[1+exp(7l„)]'~' =n+ [1+exp(- g")]'~' for n ~ 1.

With this solution, we can eliminate q„ in Eqs. (3). Thus we have obtained coupled integral equations
for q"(u) and q, '(n) (j =1, 2, . . . , v, —1) for the case P, =v, +0. Let us first consider the simplest
case v, =2, i.e., the free MTM limit. ln this case the integral equations for q" (a) and g, ~(u) become
simple algebraic equations,

g, ' = g, '/T+ in[1+ exp(- q, ')] + in[1+ exp(- rp)],

g" = E"/T+ in[1+ exp(- q, ')] —ln (1+ 1/[1+exp(- 7l")]'~']

with solution

[1+exp(- q")]'~' = (Z+ 2)/(Z+ 1), 1+exp(- g, ') = (Z+ 1)'/(Z'+ 2Z),

where Z=-exp[E" (n)/T]. Substituting 7l" and 7l,
' given by Eq. (9) into Eq. (4) gives

E (a) = —(yT/v)cosh(yn)ln (1 + exp[- E"(ct )/T] j, (10)

b.M, (2, T) = in[1+ exp(- 1/T)].

The above argument for the case P, =2 applies to the general case P, = v, as well. Returning to the
basic equation for g,

' and g~ for the case P, = v, + 0, we can first show that

[1+exp(g„, , ')]'~' = exp(g")11+ [1+exp(- g")]'~').

Substituting g„,' back into the original equation and introducing a new variable fl'(n) = e'(a)/Z by
1

[1+exp(- g')] [1+exp(- g, , , ~)] = 1+exp(- q'),

we arrive at coupled integral equations for g,
'

(j =1, 2, . . . , v, —2) and 7j' which are precisely
those of Ref. 1 for the case P, = v, ." This means
that the free energy and breather masses are con-
tinuous at P, = v„but at finite temperatures the
soliton mass is discontinuous, i.e., e'(0) c Z'(0),
because of the dissociation of the highest breather
into a soliton-antisoliton pair.

Finally, we have solved the basic equations nu-
merically for the cases P, = v, +1/v„v, +0, and

v, by the iteration method, and calculated the
coupling-constant dependences of the free energy,
lowest-breather mass, and soliton mass. Figure
1 shows these quantities at T= 2. Note that both
the free energy and lowest-breather mass change
continuously at Pp v] but the soliton mass suf-
fers a sudden change at these points. It is also
clear in Fig. 1 that the magnitude of discontinuity
in the soliton mass Dike, (v„T) becomes smaller

(12)

(13)

! for larger v„as is expected. As for the tempera-
ture dependence of LiVI, [cf. Eq. (11)for the case
v, =2], numerical results show that it always in-
creases with temperature, but the temperature
dependence becomes weaker for larger v, .

In summary, we have presented a new formula-
tion of the MTM thermodynamics for the case P,
= v, + 1/v, (v„v, ~ 2) which almost covers the en-
tire attractive-coupling regime. Taking the limit
v, - ~ in the basic equation obtained, we have
proved that the free energies obtained for the
cases P, vy and Pp v&+0 are the same, in con-
sistency with Araki's theorem. ' Breather masses
are also found to be continuous at P, = v, . On the
other hand, we find that at finite temperatures
the soliton mass suddenly decreases when Pp
passes v1 from larger values. The discontinuity
of the soliton mass has its origin in a fundamen-

which is precisely the free energy of the free MTM. Note that this demonstration of the continuity of
the free energy is nontrivial. There is a certain difference between the cases Pp v] and v, +0. What
happens when P, passes the point P, = v, from larger values is that the highest breather dissociates in-
to a soliton-antisoliton pair. That is, some frozen degrees of freedom of the soliton and antisoliton
motion, due to the existence of the highest breather, are released when P, passes v, from larger val-
ues. Since the free energy is continuous at P, =2, ' the soliton mass should decrease suddenly at this
point to cover a sudden disappearance of parts of the free energy carried by the dissociated breathers.
Switching from the hole picture to soliton-antisoliton picture by Eq. (5), we find the magnitude of dis-
continuity in the soliton mass at Pp:2 as
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FIG. 1. Plot of the free energy F (solid circles),
soliton mass M (crosses), and lowest-breather mass
M~b (open circles) as functions of the coupling constant
p, /n. at T =2. These discrete points are connected by
dashed curves for clarity. The soliton and lowest-
breather masses at T =0 are also plotted (solid curves)
for comparison. The mass and temperature are meas-
ured in the unit of the zero-temperature free-soliton
mass, M, .0

tal effect in the soliton system: the sharing of
energy and degrees of freedom among various
types of extended objects. This effect was also
a key point to the understanding of the breather
problem. '" Since this effect is more pronounced
for higher temperatures, the magnitude of dis-
continuity in the soliton mass should increase
with temper ature.
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