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Self-Triality of the Ashkin-Teller Model
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It is shown that the Ashkin-Teller model has self-triality, which is a generalization of
Kramers-Wannier self-duality proposed some time ago and illustrated with examples. In
the Hamiltonian formalism, it means that the original Hamiltonian may be reexpressed in
terms of either of two disorder variables without charge of form and that the relation be-
bveen all three variables is fully symmetric.

PACS numbers: 05.50.+q, 64.60.Cn

The Ashkin-Teller model (ATM)' involves a two-
dimensional lattice, at the sites of which reside
"spins" s and t which can take the values +1. The
spins interact with their nearest neighbors in a
manner to be made precise later. The goal is to
calculate &, the partition function, and explore
the thermodynamic s.

Now, just as the Ising model approximates a
magnetic system of vector magnetic moments
with scalar spins that can take values +1, the
ATM can be used to model a system with two mag-
netic moments per site. We could also see it as
a lattice-gas problem in which the lattice sites
are occupied by four species of atoms, the type
at any site being given by the joint values of s and
t there.

Why study such a simplified model in two di-
mensions'~ The answer is that two-dimensional
systems are now experimentally accessible and
that according to the modern theory of critical
phenomena, a given realistic Hamiltonian and a
crude approximation to it can be equivalent as far
as critical phenomena are concerned.

For the Ising model, Kramers and Wannier'
established the property of self-duality. This
implies first of all that Z(T) = Z(T"), where the
dual temperature T*(T) falls from ~ to 0 as T
rises from 0 to ~. Thus if there is a unique

critical temperature T„ it must be the solution
to T*(T,) = T, . Nowadays we know that more is
involved in self-duality: Not only is Z(T) = Z(T*),
but we can view the highly disordered high-tem-
perature system as a highly ordered system in a
dual set of variables. (The key ideas will be re-
viewed here, while further details can be found
in Ref. 3.)

In Ref. 4 I showed that self-duality, with all its
attendent implications, has a natural extension
called self-t'ai:ality and provided two concrete ex-
amples. Hepe I mill show that the ATM possess-
es self-triality. We begin with a quick review of
the Ising model, self-duality, and self-triality.

Self-duality in tIEe Ising model -~onsider . the
partition function for an anisotropic Ising model,

Z=Q, exp(Q„.K„s,. s, ,„+R,s,. s,. „),

K„=A„T, exp(- 2K, ) = A, ~, (2)

where s,. =+1 or —1 are Ising spins located at the
sites i of a two-dimensional lattice, coupled to
their neighbors at sites i+x and i+ t displaced in
the "x"and "t"directions, respectively. It is
possible to reduce the evaluation of Z to the eigen-
value problem of a transfer matrix T.' If we con-
sider, following Fradkin and Susskind, ' the case



VOLUME 50, NUMBER 11 PHYSICAL REVIEW LETTERS 14 MARCH 198$

where T -0, T has the form T=1 —TH, where

—H= Q [X„o,(n)o, (n+ 1)+A. , o, (n)]. (3)

Here o,. (n) are the Pauli matrices obeying the fol-
lowing algebra:

]o,. (n), o,. (n))= 25,, ,

[o,. (n), o,. (m)]=0 for m gn.
(4)

The free energy is simply related to the energy
of the ground state P) while (0 ~v, ~0) = (a,) is the
magnetization. '

Since the physics depends only on the ratio A.

=A.„/A.„ let us set X„+X,=1. When X„=1, ~0)
= ~+), which are states with all spins up or down.
The order parameter (o,) =+I in this case, which
corresponds to zero temperature. The A, part of
II flips the spins and disrupts this order. Beyond
some critical value A.„(og vanishes. Self-dual-
ity gives us a way to find A., as follows. Let us
define a new set of variables

p,(n)= Q o, (m}, p, ,(n)=o, (n)o,(n+1)

which obey the same algebra as the o's. In terms
of these

—H = g „[X„p,,(n) + X, p.,(n —1)p.,(n)]. (6)

Since H(p, ) has the same form as K(o), and o and
p. are isomorphic, the spectrum, and in particu-
lar, the ground-state energy E„are invariant
under X„-X,-I/A. . Thus a singularity in E,(X)
at any value of A. implies the same at its inverse.
Assuming the phase transition is unique, we see
that it must be at A. =1 or A.„=A., = —,.

One calls p., the disorder variable with respect
to 0, for the following reason. Consider the vacu-
um state ~+) with all spins up. When p, = g" „o,
acts on it, it flips all the spins from —~ up to n.
Such a state, which connects two different vacua,

is called a kink or a soliton. While a single kink
is forbidden in the ordered state by the imposed
boundary conditions, a pair of them is allowed
and will produce an island of spins that are ori-
ented opposite to the macroscopic magnetization.
In this sense, kinks disorder the system. For
X, »-,' or A. »1, we see from Eq. (6) that the sys-
tem that seems disordered in 0, is ordered in the
disorder variable p, Of course the names order
and disorder are relative, and one could start
with Eq. (6) a,nd think of tL, as the order pa. ram-
eter. [The formulas for a as a function of p, will
have exactly the same form as Eq. (5).] For the
order-disorder concept in the two-dimensional
version, see Refs. 7 and 8.

In summary, the salient features of self-duality
are the following:

(i) There exists a nonlocal change of variables
that preserves the form of II up to a permutation
of the coupling constants. (ii) The new variables
are isomorphic to the old, i.e. , obey the same
algebra. {iii) The new variables can be inter-
preted as disorder variables with respect to the
old and vice versa. The transformation laws have
the same form when we go from the old to the
new variables as when we revert back.

Self triality. -It is now—natural to use the term
self-triality for the case wherein: {i}There exist
two sets of isomorphic disorder variables and II
has the same form as before when expressed in
terms of either. (ii) There exists complete sym-
metry between all three variables, and in particu-
lar, the formulas for the change of variables
have the same form as their inverses.

A spin model based on Dirac (instead of Pauli)
matrices and a quantum field theory [the Q(8)
Gross-Neveu model ] exhibiting the self-triality
are discussed in Ref. 4.

Self-triality of the Ash&in-Teller model. Here—
each site contains two Ising spins s,. and t,. and
in the same notation as before,

Z= g exp]g[J„'"s,s, ,„+J„'"t,t, ,„+4„'"s,. t, s. , ,„t, ,„+(x—t.)]).

Consider the case

4 "' = TA„"' (i = 1, 2., 3); exp[- 2(J, '" + J', '")] = TA, '" and cyclic permutations

with 7-0. We get as before

—H= g„[A, '"o;(n)+ A, '" r, (n)+ X, "'a', (n)v, (n)+ X„"'o,(n)o, (n+ 1)

+ X„'"~,( )~n, ( n1)++ X, '"o,(n)o, (n+1)7,(n)T, (n+1)],
where 7 are the Pauli matrices associated with the spins t, They obey the same algebra as the o's
and commute with them. Following Wegner" and Wu and Wang, " let us perform a duality transforma-
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tion on the v matrices alone as follows:

p, , (n) = v, (n)T,(n+1), p, ,(n) = g T, (m) =- g ~„

and get II as a function of o and p.. Further let us restrict ourselves to the following manifold in pa-
rameter space:

i=12 3x i~

which is invariant under o - p.. In this subspace,

—H= Q„{cd,[o',(n)o', (n+ 1)+ p, (n - 1)p, ,(n)] + cd[a(n)+ p„(n)]

+ &u, [p,,(n)&x~(n)cr, (n+ 1)+o, (n) p3(n —1)p.,(n)] j. (12)

(The slight asymmetry between o and p, is due to the fact that strictly speaking, they are defined on
two different lattices dual to each other and which must be exchanged along with o and p, .)

I et us normalize II in the following symmetric way:

a+ ~a+ u3 (13)

It is convenient to imagine an equilateral triangle of unit height and to associate with each interior
point the coordinates ~„~„and co, corresponding to the perpendicular distances to the three sides.
[Equation (13) will be automatically satisfied. ]

The natural order parameters for H in Eq. (12) are clearly v, and p, When ~, =1, that is, at one of
the corners of the triangle, )(v,) ~= ~(p,) (=1. As we turn on a&, and ~, at the expense of ~„ this order
will be reduced and eventually wiped out. To explore the behavior of the system beyond this domain,
we introduce two sets of disorder variables (to tackle regions with dominant cd, or u, ). The first set
is

y, (n) =~(n)&(n+1), y, (n) = II c,(~) =-II ~„~(n)=u, (n-l)u, (n), ~(n) = g u, (~) -=II u, . (14)

It can be verified that y and ~ obey the same algebra as o and p, and that the inverse transformations
have the same form. [The 7'we see here is the same one we began with, see Eq. (10).] In terms of
these

—H= g„{m,[y, (n)+ 7;(n)] + e,[r,(n)v3(n+ 1)+y, (n —1)y,(n)]

+ &u, [y, (n) 73(n) 7',(n+ 1)+ v, (n)y, (n —1)y,(n)] J. (15)

(16)

in terms of which

%e now see that when co, =1, the system is ordered in ~, and y„with the ~, and ~, terms disrupting
this order.

The other set of disorder variables is

7i, (n) = v, (n), 7l,(n) =(Q p.„)v,(n), &, (n) = p, (n), (,(n) = p, ,(n) go'„

—H= Q„{(u,[g,(n)q, (n+1)g, (n)+ $,(n —1)],(n)7l, (n)]

+ (u 2[7', (n) + (,(n) ) + (u, [$,(n —1)g,(n) + g,(n) 7i,(n+ 1)]]. (17)

Now we see that near cd, =1, the system is ordered in q, and $, while the &u, and v, terms disrupt the
order.

It is easy to see that instead of starting with H in Eq. (12') and identifying o', and p,, as order param-
eters with respect to which (y„~,) and (g„q,) are disorder parameters, we could just as well start
with H in Eqs. (15) or (17) and exchange the roles of the variables. There is complete symmetry be-
tween the variables at every stage.

While the natural variables for the present analysis are (cr„p.,) and their disorder variables, we can
still ask how things look in terms of the original variables v„T„and O, T,. Near cu, =1, the system
is ordered in &x, and in p.,= jf 7„which disorders 7, and o', v,. Near cd, =1, the order is in v, and y,
= f[o„which disorders o, and o,v, . Finally near a&, =1, the order is in g3 =(gp, )o, =w30, and in $3
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= p.,go, =g(O,T,) which disorders ~, and T, but not &,T, . This picture does not correspond to triality
as defined above since a„~„and a,7, are not disorder variables with respect to each other. Hence
our initial choice of variables.

Self-triality will of course tell us a lot about the phase diagram in the triangle introduced earlier.
1 do not wish to pursue this aspect here since the phase structure and symmetries (besides triality)
are extensively discussed in the literature, ""some even in the Hamiltonian form. "

Let us note that while duality in the Ising model relates high and low temperatures, here it relates
different phases in a plane that is left invariant under such high-low transformation.

Finally we relate our H to a fermion field theory. Let us introduce four Majorana (Hermitian) op-
erators,

4, (n) = (IIo, )( II ~, )o,(n), 4.(n) = (IIo, )( & T, )o.(n), X,(n) = (II~,)~.(n), X.(n) = (II~, )7.(n),

obeying

(g,. (n), g,. (m)] = 25,, 5 „, Q, (n), y, (m) j = 25,, 5 „, Q,. (n), y,. (m) j=0.

In terms of these

—H= Q„{v,[ig, (n)g, (n+ 1}—iy, (n)y, (n)]+ &u, [iy, (n)y, (n+ 1) —ig, (n) g, (n)]

+ v, [g, (n) g, (n+ 1)y, (n)y, (n+ 1)+ (,(n) (,(n)y, (n) y, (n}]) (2o)

and we can think of self-triality as a property of this field theory.
To conclude, it is shown here that the Ashkin-Teller model too exhibits self-triality, as defined here

and in Ref. 4. While the present analysis was in the Hamiltonian form, the phenomenon undoubtedly
has a counterpart in the classical two-dimensional version of the problem. Given the close link be-
tween Baxter's eight-vertex model" and this one"" we can expect self-triality there as well.
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